Article

Kruppel-like factor 4 is induced by rapamycin and mediates the anti-proliferative effect of rapamycin in rat carotid arteries after balloon injury

Peking University Health Science Center, Beijing, China.
British Journal of Pharmacology (Impact Factor: 4.99). 10/2011; 165(7):2378-88. DOI: 10.1111/j.1476-5381.2011.01734.x
Source: PubMed

ABSTRACT The transcription factor, Krüppel-like factor 4 (KLF4), plays an important role in regulating the proliferation of vascular smooth muscle cells. This study aimed to examine the effect of rapamycin on the expression of KLF4 and the role of KLF4 in arterial neointimal formation.
Expression of KLF4 was monitored using real-time PCR and immunoblotting in cultured vascular smooth muscle cells. and in rat carotid arteries in vivo after balloon injury. Adenovirus-mediated overexpression and siRNA-mediated knockdown of KLF4 were used to examine the role of KLF4 in mediating the anti-proliferative role of rapamycin . KLF4-regulated genes were identified using cDNA microarray.
Rapamycin induced the expression of KLF4 in vitro and in vivo. Overexpression of KLF4 inhibited cell proliferation and the activity of mammalian target of rapamycin (mTOR) and its downstream pathways, including 4EBP-1 and p70S6K in vascular smooth muscle cells and prevented the neointimal formation in the balloon-injured arteries. KLF4 up-regulated the expression of GADD45β, p57(kip2) and p27(kip1) . Furthermore, knockdown of KLF4 attenuated the anti-proliferative effect of rapamycin both in vitro and in vivo.
KLF4 plays an important role in mediating the anti-proliferative effect of rapamycin in VSMCs and balloon-injured arteries. Thus, it is a potential target for the treatment of proliferative vascular disorders such as restenosis after angioplasty.

Download full-text

Full-text

Available from: Nanping Wang, Jun 17, 2015
2 Followers
 · 
142 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a major cellular process by which cytoplasmic components such as damaged organelles and misfolded proteins are recycled. Although low levels of autophagy occur in cells under basal conditions, certain cellular stresses including nutrient depletion, DNA damage, and oxidative stress are known to robustly induce autophagy. Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor activated during oxidative stress to maintain genomic stability. Both autophagy and KLF4 play important roles in response to stress and function in tumor suppression. To explore the role of KLF4 on autophagy in mouse embryonic fibroblasts (MEFs), we compared wild-type with Klf4 deficient cells. To determine the levels of autophagy, we starved MEFs for different times with Earle's balanced salts solution (EBSS). Rapamycin was used to manipulate mTOR activity and autophagy. The percentage of cells with γ-H2AX foci, a marker for DNA damage, and punctate pattern of GFP-LC3 were counted by confocal microscopy. The effects of the drug treatments, Klf4 overexpression, or Klf4 transient silencing on autophagy were analyzed using Western blot. Trypan Blue assay and flow cytometry were used to study cell viability and apoptosis, respectively. qPCR was also used to assay basal and the effects of Klf4 overexpression on Atg7 expression levels. Here our data suggested that Klf4 (-/-) MEFs exhibited impaired autophagy, which sensitized them to cell death under nutrient deprivation. Secondly, DNA damage in Klf4-null MEFs increased after treatment with EBSS and was correlated with increased apoptosis. Thirdly, we found that Klf4 (-/-) MEFs showed hyperactive mTOR activity. Furthermore, we demonstrated that rapamycin reduced the increased level of mTOR in Klf4 (-/-) MEFs, but did not restore the level of autophagy. Finally, re-expression of Klf4 in Klf4 deficient MEFs resulted in increased levels of LC3II, a marker for autophagy, and Atg7 expression level when compared to GFP-control transfected Klf4 (-/-) MEFs. Taken together, our results strongly suggest that KLF4 plays a critical role in the regulation of autophagy and suppression of mTOR activity. In addition, we showed that rapamycin decreased the level of mTOR in Klf4 (-/-) MEFs, but did not restore autophagy. This suggests that KLF4 regulates autophagy through both mTOR-dependent and independent mechanisms. Furthermore, for the first time, our findings provide novel insights into the mechanism by which KLF4 perhaps prevents DNA damage and apoptosis through activation of autophagy.
    Molecular Cancer 05/2015; 14(1). DOI:10.1186/s12943-015-0373-6 · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This invited review summarizes work presented in the Russell Ross lecture delivered at the 2012 proceedings of the American Heart Association. We begin with a brief overview of the structural, cellular, and molecular biology of Krüppel-like factors. We then focus on discoveries during the past decade, implicating Krüppel-like factors as key determinants of vascular cell function in atherosclerotic vascular disease.
    Arteriosclerosis Thrombosis and Vascular Biology 02/2014; 34(3). DOI:10.1161/ATVBAHA.113.301925 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian target of rapamycine (mTOR) pathway is a key regulator of cellular growth, development, and ageing, and unraveling its control is essential for understanding life and death of biological organisms. A motif-discovery workbench including nine tools was used to identify transcription factors involved in five basic (Insulin, MAPK, VEGF, Hypoxia, and mTOR core) activities of the mTOR pathway. Discovered transcription factors are classified as "process-specific" or "pathway-ubiquitous" with highlights toward their regulating/regulated activities within the mTOR pathway. Our transcription regulation results will facilitate further research on investigating the control mechanism in mTOR pathway.
    Frontiers in Cell and Developmental Biology 06/2014; 2:23. DOI:10.3389/fcell.2014.00023