Article

Functional Metagenomic Investigations of the Human Intestinal Microbiota

Center for Genome Sciences and Systems Biology, Washington University School of Medicine St. Louis, MO, USA.
Frontiers in Microbiology (Impact Factor: 3.94). 10/2011; 2:188. DOI: 10.3389/fmicb.2011.00188
Source: PubMed

ABSTRACT The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation, and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique, used for decades to study environmental microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.

Full-text

Available from: Gautam Dantas, Jun 16, 2015
0 Followers
 · 
145 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The digestion of food ingredients depends on the action of the gut microbiota and has a significant influence on the health, especially in the case of metabolic diseases, of the host organism. Despite the relevance of the structure and functionalities in the microbiota for the metabolism of the host, the spatial resolution of microbial consortia and the functionalities in the different gut sections of the rat are mostly unknown. Since there are suitable rat models for human metabolic diseases, the microbiota of the rat is of special interest. Samples along the intestinal tract of rats were investigated using metaproteomics and 16S rRNA gene pyrosequencing. The procedures for harvesting bacteria from the mucus and the content of the gut sections and feces were optimized leading to 2802 nonredundant bacterial protein groups in total that were assigned to spectra measured by liquid chromatography-tandem mass spectrometry. The majority of 16S rRNA genes and protein groups belonged to members of Firmicutes, Bacteroidetes and Proteobacteria. The functionalities in the enzyme repertoire were compared between the mucus and the content of the large intestine sections and the feces samples. This spatial resolution allowed pinpointing changes in the community to specific metabolic capacities like carbohydrate transport and energy conservation. The results showed that the mere analysis of feces samples reflects the functions of the gut microbiota only to a minor extent and sheds light on the metabolic interchange between the microbiota and the host organism.
    Journal of Proteome Research 09/2012; 11(11). DOI:10.1021/pr3006364 · 5.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arachidonic acid (AA) is supplied together with docosahexaenoic acid (DHA) in infant formulas, but we have limited knowledge about the effects of supplementation with either of these long-chain polyunsaturated fatty acids (LCPUFA) on growth and developmental outcomes. AA is present in similar levels in breast-milk throughout the world, whereas the level of DHA is highly diet-dependent. Autopsy studies show similar diet-dependent variation in brain DHA, whereas AA is little affected by intake. Early intake of DHA has been shown to affect visual development, but the effect of LCPUFA on neurodevelopment remains to be established. Few studies have found any functional difference between infants supplemented with DHA alone compared to DHA+AA, but some studies show neurodevelopmental advantages in breast-fed infants of mothers supplemented with n-3 LCPUFA alone. It also remains to be established whether the AA/DHA-balance could affect allergic and inflammatory outcomes later in life. Disentangling effects of genetic variability and dietary intake on AA and DHA-status and on functional outcomes may be an important step in the process of determining whether AA-intake is of any physiological or clinical importance. However, based on the current evidence we hypothesize that dietary AA plays a minor role on growth and development relative to the impact of dietary DHA.Pediatric Research (2014); doi:10.1038/pr.2014.168.
    Pediatric Research 10/2014; 77(1-2). DOI:10.1038/pr.2014.166 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Starvation not only affects the nutritional and health status of the animals, but also the microbial composition in the host's intestine. Next-generation sequencing provides a unique opportunity to explore gut microbial communities and their interactions with hosts. However, studies on gut microbiomes have been conducted predominantly in humans and land animals. Not much is known on gut microbiomes of aquatic animals and their changes under changing environmental conditions. To address this shortcoming, we determined the microbial gene catalogue, and investigated changes in the microbial composition and host-microbe interactions in the intestine of Asian seabass in response to starvation. We found 33 phyla, 66 classes, 130 orders and 278 families in the intestinal microbiome. Proteobacteria (48.8%), Firmicutes (15.3%) and Bacteroidetes (8.2%) were the three most abundant bacteria taxa. Comparative analyses of the microbiome revealed shifts in bacteria communities, with dramatic enrichment of Bacteroidetes, but significant depletion of Betaproteobacteria in starved intestines. In addition, significant differences in clusters of orthologous groups (COG) functional categories and orthologous groups were observed. Genes related to antibiotic activity in the microbiome were significantly enriched in response to starvation, and host genes related to the immune response were generally up-regulated. This study provides the first insights into the fish intestinal microbiome and its changes under starvation. Further detailed study on interactions between intestinal microbiomes and hosts under dynamic conditions will shed new light on how the hosts and microbes respond to the changing environment.
    BMC Genomics 04/2014; 15(1):266. DOI:10.1186/1471-2164-15-266 · 4.04 Impact Factor