Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination.

Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
Science (Impact Factor: 31.2). 10/2011; 334(6054):376-80. DOI: 10.1126/science.1207862
Source: PubMed

ABSTRACT Inhibitor of apoptosis (IAP) proteins are negative regulators of cell death. IAP family members contain RING domains that impart E3 ubiquitin ligase activity. Binding of endogenous or small-molecule antagonists to select baculovirus IAP repeat (BIR) domains within cellular IAP (cIAP) proteins promotes autoubiquitination and proteasomal degradation and so releases inhibition of apoptosis mediated by cIAP. Although the molecular details of antagonist-BIR domain interactions are well understood, it is not clear how this binding event influences the activity of the RING domain. Here biochemical and structural studies reveal that the unliganded, multidomain cIAP1 sequesters the RING domain within a compact, monomeric structure that prevents RING dimerization. Antagonist binding induces conformational rearrangements that enable RING dimerization and formation of the active E3 ligase.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquitination is a highly conserved post-translational modification that regulates protein trafficking, function, and turnover. Ubiquitin ligases (E3s) conjugate ubiquitin polypeptides on substrates, whereas deubiquitnases (DUBs) reverse ubiquitination. Engineering of chemical antagonists and inhibitors of ubiquitin ligases and DUBs has considerably aided the study of enzymes that participate in ubiquitin modification of substrates. In addition, proteomic tools have been developed to characterize the enzymes, substrates, and modifications regulated by DUBs and E3s. Here we review inhibitors and antagonists that have been developed against DUBs and E3s, focusing on enzymes that participate in ubiquitin editing or in the reciprocal ubiquitin regulation of substrates. We outline the cellular biology that is regulated by these DUBs and E3s and highlight how the inhibitory compounds have improved our understanding of these pathways. Finally, we discuss the challenges and future directions for pharmacologically targeting ubiquitin-modifying enzymes, as well as the development of proteomic methods to evaluate ubiquitin modification of substrates.
    Trends in Pharmacological Sciences 04/2014; · 9.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dimeric RING E3 ligases interact with protein substrates and conformationally restrain the ubiquitin-E2-conjugating enzyme thioester complex such that it is primed for catalysis. RNF4 is an E3 ligase containing an N-terminal domain that binds its polySUMO substrates and a C-terminal RING domain responsible for dimerization. To investigate how RNF4 activity is controlled, we increased polySUMO substrate concentration by ablating expression of SUMO protease SENP6. Accumulation of SUMO chains in vivo leads to ubiquitin-mediated proteolysis of RNF4. In vitro we demonstrate that at concentrations equivalent to those found in vivo RNF4 is predominantly monomeric and inactive as an ubiquitin E3 ligase. However, in the presence of SUMO chains, RNF4 is activated by dimerization, leading to both substrate ubiquitylation and autoubiquitylation, responsible for degradation of RNF4. Thus the ubiquitin E3 ligase activity of RNF4 is directly linked to the availability of its polySUMO substrates.
    Molecular cell 03/2014; 53(6):880-92. · 14.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis is a tightly regulated cellular process and faulty regulation of apoptosis is a hallmark of human cancers. Targeting key apoptosis regulators with the goal to restore apoptosis in tumor cells has been pursued as a new cancer therapeutic strategy. XIAP, cIAP1, and cIAP2, members of inhibitor of apoptosis (IAP) proteins, are critical regulators of cell death and survival and are attractive targets for new cancer therapy. The SMAC/DIABLO protein is an endogenous antagonist of XIAP, cIAP1, and cIAP2. In the last decade, intense research efforts have resulted in the design and development of several small-molecule SMAC mimetics now in clinical trials for cancer treatment. In this review, we will discuss the roles of XIAP, cIAP1, and cIAP2 in regulation of cell death and survival, and the design and development of small-molecule SMAC mimetics as novel cancer treatments.
    Pharmacology & therapeutics. 05/2014;