Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination.

Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
Science (Impact Factor: 31.2). 10/2011; 334(6054):376-80. DOI: 10.1126/science.1207862
Source: PubMed

ABSTRACT Inhibitor of apoptosis (IAP) proteins are negative regulators of cell death. IAP family members contain RING domains that impart E3 ubiquitin ligase activity. Binding of endogenous or small-molecule antagonists to select baculovirus IAP repeat (BIR) domains within cellular IAP (cIAP) proteins promotes autoubiquitination and proteasomal degradation and so releases inhibition of apoptosis mediated by cIAP. Although the molecular details of antagonist-BIR domain interactions are well understood, it is not clear how this binding event influences the activity of the RING domain. Here biochemical and structural studies reveal that the unliganded, multidomain cIAP1 sequesters the RING domain within a compact, monomeric structure that prevents RING dimerization. Antagonist binding induces conformational rearrangements that enable RING dimerization and formation of the active E3 ligase.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The fusion of mononucleated muscle progenitor cells (myoblasts) into multinucleated muscle fibers is a critical aspect of muscle development and regeneration. We identified the noncanonical nuclear factor κB (NF-κB) pathway as a signaling axis that drives the recruitment of myoblasts into new muscle fibers. Loss of cellular inhibitor of apoptosis 1 (cIAP1) protein led to constitutive activation of the noncanonical NF-κB pathway and an increase in the number of nuclei per myotube. Knockdown of essential mediators of NF-κB signaling, such as p100, RelB, inhibitor of κB kinase α, and NF-κB-inducing kinase, attenuated myoblast fusion in wild-type myoblasts. In contrast, the extent of myoblast fusion was increased when the activity of the noncanonical NF-κB pathway was enhanced by increasing the abundance of p52 and RelB or decreasing the abundance of tumor necrosis factor (TNF) receptor-associated factor 3, an inhibitor of this pathway. Low concentrations of the cytokine TNF-like weak inducer of apoptosis (TWEAK), which preferentially activates the noncanonical NF-κB pathway, also increased myoblast fusion, without causing atrophy or impairing myogenesis. These results identify roles for TWEAK, cIAP1, and noncanonical NF-κB signaling in the regulation of myoblast fusion and highlight a role for cytokine signaling during adult skeletal myogenesis.
    Science Signaling 01/2012; 5(246):ra75. · 7.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Graphical Abstract Figure optionsView in workspace Highlights ► Glomulin (GLMN) binds with about 40 nM Kd to RBX1 but not other related RING E3s ► A crystal structure shows GLMN binding RBX1's E2-interacting surface ► Biochemical and NMR data indicate GLMN inhibits RBX1 E3 by blocking E2 access ► The structure suggests GVM disease mutations would prevent GLMN binding to RBX1
    Molecular Cell. 08/2012; 47(3):371–382.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Allogeneic hematopoietic stem cell transplantation (HSCT) is an established treatment option for high-risk hematological malignancies, and may also be offered to patients with solid malignancies refractory to conventional therapies. In case of patients' relapse, refractory tumor cells may then be targeted by cellular therapy-based combination strategies. Here, we investigated the potential of small molecule IAP (SMAC mimetic) BV6 in increasing cytokine-induced killer (CIK) cell-mediated cytotoxicity against different tumor targets. Four-hour pre-incubation with 2.5 μMol BV6 moderately enhanced CIK cell-mediated lysis of hematological (H9, THP-1, and Tanoue) and solid malignancies (RH1, RH30, and TE671). However, BV6 also increased apoptosis of non-malignant cells like peripheral blood mononuclear cells and most notably had an inhibitory effect on immune cells potentially limiting their cytotoxic potential. Hence, cytotoxicity increased in a dose-dependent manner when BV6 was removed before CIK cells were added to tumor targets. However, cytotoxic potential was not further increasable by extending BV6 pre-incubation period of target cells from 4 to 12 h. Molecular studies revealed that BV6 sensitization of target cells involved activation of caspases. Here, we provide evidence that SMAC mimetic may sensitize targets cells for CIK cell-induced cell death. However, BV6 also increased apoptosis of non-malignant cells like CIK cells and peripheral mononuclear cells. These findings may therefore be important for cell- and small molecule IAP-based combination therapies of resistant cancers after allogeneic HSCT.
    Frontiers in Pediatrics 07/2014; 2:75.

Similar Publications