Article

Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enterica and Escherichia coli O157:H7.

Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Agricultural Biomaterials, Seoul National University, Seoul, South Korea.
Applied and Environmental Microbiology (Impact Factor: 3.95). 01/2012; 78(1):58-69. DOI: 10.1128/AEM.06231-11
Source: PubMed

ABSTRACT Salmonella enterica and Escherichia coli O157:H7 are major food-borne pathogens causing serious illness. Phage SFP10, which revealed effective infection of both S. enterica and E. coli O157:H7, was isolated and characterized. SFP10 contains a 158-kb double-stranded DNA genome belonging to the Vi01 phage-like family Myoviridae. In vitro adsorption assays showed that the adsorption constant rates to both Salmonella enterica serovar Typhimurium and E. coli O157:H7 were 2.50 × 10⁻⁸ ml/min and 1.91 × 10⁻⁸ ml/min, respectively. One-step growth analysis revealed that SFP10 has a shorter latent period (25 min) and a larger burst size (>200 PFU) than ordinary Myoviridae phages, suggesting effective host infection and lytic activity. However, differential development of resistance to SFP10 in S. Typhimurium and E. coli O157:H7 was observed; bacteriophage-insensitive mutant (BIM) frequencies of 1.19 × 10⁻² CFU/ml for S. Typhimurium and 4.58 × 10⁻⁵ CFU/ml for E. coli O157:H7 were found, indicating that SFP10 should be active and stable for control of E. coli O157:H7 with minimal emergence of SFP10-resistant pathogens but may not be for S. Typhimurium. Specific mutation of rfaL in S. Typhimurium and E. coli O157:H7 revealed the O antigen as an SFP10 receptor for both bacteria. Genome sequence analysis of SFP10 and its comparative analysis with homologous Salmonella Vi01 and Shigella phiSboM-AG3 phages revealed that their tail fiber and tail spike genes share low sequence identity, implying that the genes are major host specificity determinants. This is the first report identifying specific infection and inhibition of Salmonella Typhimurium and E. coli O157:H7 by a single bacteriophage.

0 Bookmarks
 · 
121 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel flagellatropic phage of Salmonella enterica serovar Typhimurium called iEPS5 was isolated and characterized. iEPS5 has an icosahedral head and a long non-contractile tail with a tail fiber. Genome sequencing revealed a double-stranded DNA of 59,254 bp having 73 open reading frames (ORFs). To identify the receptor for iEPS5, Tn5 transposon insertion mutants of S. Typhimurium SL1344 that were resistant to the phage were isolated. All of the phage-resistant mutants were found to have mutations in genes involved in flagellar formation, suggesting that the flagellum is the adsorption target of this phage. Analysis of phage infection using the ΔmotA mutant, which is flagellated but non-motile, demonstrated the requirement of flagellar rotation for iEPS5 infection. Further analysis of phage infection using the ΔcheY mutant revealed that iEPS5 could infect host bacteria only when the flagellum is rotating counterclockwise (CCW). These results suggested that the CCW-rotating flagellar filament is essential for phage adsorption and required for successful infection by iEPS5. In contrast to the well-studied flagellatropic phage Chi, iEPS5 cannot infect the ΔfliK mutant that makes a polyhook without a flagellar filament, suggesting that these two flagellatropic phages utilize different infection mechanisms. Here, we present evidences that iEPS5 may inject its DNA into the flagellar filament for infection by assessing DNA transfer from SYBR-gold-labeled iEPS5 to the host bacteria.
    Applied and Environmental Microbiology 06/2013; · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phages are known to effectively kill extracellularly multiplying bacteria as they do not have the ability of intracellular penetration within the animal cells. However, the present manuscript focuses on studying the impact of surface-adsorbed phage particles on the killing of engulfed Staphylococcus aureus inside phagocytic cells. Mouse peritoneal macrophages were isolated and cultured, followed by evaluation of their ability of bacterial uptake and killing. The intracellular killing potential of macrophages in the presence of unadsorbed free phage as well as phage adsorbed onto S. aureus 43300 was studied. Phage added alone to macrophage preparation did not influence intracellular killing of engulfed S. aureus by macrophages. However, phage adsorbed onto host bacterial cells (utilizing host bacteria as a vehicle to carry the lytic phage into the phagocytic compartment) brought about time-dependent and titre-dependent significant reduction in the number of viable intracellular cocci. Phage particles that shuttled inside the macrophage along with bacteria also significantly reduced cytotoxic damage caused by methicillin-resistant S. aureus (MRSA). This in turn enhanced the bactericidal killing potential of phagocytic cells. In earlier studies the inability of phages to kill intracellular bacteria has been thought to be a major drawback of phage therapy. For the first time results of this study confirm the killing ability of the broad host range lytic phage MR-5 of both extracellular as well as intracellular engulfed S. aureus inside macrophages. This approach shall not only restrict intracellular proliferation of staphylococci within the myeloid cells but also protect the host from further relapse of infection and treatment failures.
    Applied Microbiology and Biotechnology 03/2014; · 3.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salmonella is a widely distributed foodborne pathogen that causes tens of millions of salmonellosis cases globally every year. While the genomic diversity of Salmonella is increasingly well studied, our knowledge of Salmonella phage genomic diversity is still rather limited, despite the contributions of both lysogenic and lytic phages to Salmonella virulence, diversity and ecology (e.g., through horizontal gene transfer and Salmonella lysis). To gain a better understanding of phage diversity in a specific ecological niche, we sequenced 22 Salmonella phages isolated from a number of dairy farms from New York State (United States) and analyzed them using a comparative genomics approach. Classification of the 22 phages according to the presence/absence of orthologous genes allowed for classification into 8 well supported clusters. In addition to two phage clusters that represent novel virulent Salmonella phages, we also identified four phage clusters that each contained previously characterized phages from multiple continents. Our analyses also identified two clusters of phages that carry putative virulence (e.g., adhesins) and antimicrobial resistance (tellurite and bicyclomycin) genes as well as virulent and temperate transducing phages. Insights into phage evolution from our analyses include (i) identification of DNA metabolism genes that may facilitate nucleotide synthesis in phages with a G+C % distinct from Salmonella, and (ii) evidence of Salmonella phage tailspike and fiber diversity due to both single nucleotide polymorphisms and major re-arrangements, which may affect the host specificity of Salmonella phages. Genomics-based characterization of 22 Salmonella phages isolated from dairy farms allowed for identification of a number of novel Salmonella phages. While the comparative genomics analyses of these phages provide a number of new insights in the evolution and diversity of Salmonella phages, they only represent a first glimpse into the diversity of Salmonella phages that is likely to be discovered when phages from different environments are characterized.
    BMC Genomics 07/2013; 14(1):481. · 4.40 Impact Factor

Full-text (2 Sources)

View
18 Downloads
Available from
May 21, 2014