Article

Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enterica and Escherichia coli O157:H7.

Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Agricultural Biomaterials, Seoul National University, Seoul, South Korea.
Applied and Environmental Microbiology (Impact Factor: 3.95). 01/2012; 78(1):58-69. DOI: 10.1128/AEM.06231-11
Source: PubMed

ABSTRACT Salmonella enterica and Escherichia coli O157:H7 are major food-borne pathogens causing serious illness. Phage SFP10, which revealed effective infection of both S. enterica and E. coli O157:H7, was isolated and characterized. SFP10 contains a 158-kb double-stranded DNA genome belonging to the Vi01 phage-like family Myoviridae. In vitro adsorption assays showed that the adsorption constant rates to both Salmonella enterica serovar Typhimurium and E. coli O157:H7 were 2.50 × 10⁻⁸ ml/min and 1.91 × 10⁻⁸ ml/min, respectively. One-step growth analysis revealed that SFP10 has a shorter latent period (25 min) and a larger burst size (>200 PFU) than ordinary Myoviridae phages, suggesting effective host infection and lytic activity. However, differential development of resistance to SFP10 in S. Typhimurium and E. coli O157:H7 was observed; bacteriophage-insensitive mutant (BIM) frequencies of 1.19 × 10⁻² CFU/ml for S. Typhimurium and 4.58 × 10⁻⁵ CFU/ml for E. coli O157:H7 were found, indicating that SFP10 should be active and stable for control of E. coli O157:H7 with minimal emergence of SFP10-resistant pathogens but may not be for S. Typhimurium. Specific mutation of rfaL in S. Typhimurium and E. coli O157:H7 revealed the O antigen as an SFP10 receptor for both bacteria. Genome sequence analysis of SFP10 and its comparative analysis with homologous Salmonella Vi01 and Shigella phiSboM-AG3 phages revealed that their tail fiber and tail spike genes share low sequence identity, implying that the genes are major host specificity determinants. This is the first report identifying specific infection and inhibition of Salmonella Typhimurium and E. coli O157:H7 by a single bacteriophage.

0 Bookmarks
 · 
136 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli is an important opportunistic pathogen. It can cause sepsis and severe infection. The application of lytic bacteriophages to treat infectious diseases is an alternative to antibiotics. A lytic Escherichia coli phage, designated IME-EC2, was isolated from hospital sewage. Transmission electron microscopy revealed that IME-EC2 to be a member of the family Podoviridae. It had a 60-nm head and a 15-nm tail. Here, we present the complete genome sequence of this phage, which consists of 41,510 bp with an overall G+C content of 59.2 %. A total of 60 coding sequences (CDS) were identified, and the phage genome does not contain any tRNA genes. Forty percent of the unknown CDSs are unique to IME-EC2. This phage does not show significant similarity to other phages at the DNA level, which suggests that IME-EC2 could be a novel phage. One of the unique features identified in the IME-EC2 genome was a gene coding for a putative colanic-acid-degrading protein, which could allow the phage to degrade bacterial capsule and biofilms. Another unique feature is that IME-EC2 does not contain a terminase small subunit, which suggests that this phage may have a unique packaging mechanism. The present work provides novel information on phages and shows that this lytic phage or its products could be exploited to destroy bacterial biofilms and pathogenic E. coli.
    Archives of virology. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: To understand phage infection and host lysis mechanisms with pathogenic Salmonella, a novel Salmonella Typhimurium-targeting bacteriophage SPN9CC, belonging to the Podoviridae family, was isolated and characterized. The phage infects S. Typhimurium via the O-antigen of lipopolysaccharide (LPS) and forms clear plaques with cloudy centers due to lysogen formation. Phylogenetic analysis of phage major capsid proteins (MCPs) revealed that this phage is a member of lysogen-forming P22-like phage group. However, comparative genomic analysis of SPN9CC with P22-like phages indicated that their lysogeny control regions and host lysis gene clusters share very low identities, suggesting that lysogen formation and host lysis mechanisms may be diverse among phages in this group. Analysis of the expression of SPN9CC host cell lysis genes encoding holin, endolysin, and Rz/Rz1-like proteins individually or in combinations in S. Typhimurium and E. coli hosts revealed that collaboration of these lysis proteins is important for lysis of both hosts, and holin is a key protein. To further investigate the role of the lysogeny control region in phage SPN9CC, a ΔcI mutant (SPN9CCM) of phage SPN9CC was constructed. The mutant does not produce a cloudy center in the plaques, suggesting that this mutant phage is virulent and no longer temperate. Subsequent comparative one-step growth analysis and challenge assays revealed that SPN9CCM has shorter eclipse/latent periods and a larger burst size as well as higher host lysis activity than SPN9CC. The present work indicates the possibility of engineering temperate phages as promising biocontrol agents similar to virulent phages.
    Applied and Environmental Microbiology 11/2013; · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacteriophages have been used as natural biocontrol and therapeutic agents, but also as biotechnological tools for bacterial engineering. We showed recently that the transducing bacteriophage ϕMAM1 is a ViI-like phage and a member of the new genus, 'Viunalikevirus'. Here, we show that four additional ViI-like phages and three new environmentally isolated viunalikeviruses, all infecting plant and human pathogens, are very efficient generalised transducers capable of transducing chromosomal markers at frequencies of up to 10(-4) transductants per plaque-forming unit. We also demonstrate the interstrain transduction of plasmids and chromosomal markers, including genes involved in anabolism, genes for virulence and genes encoding secondary metabolites involved in biocontrol. We propose that all viunalikeviruses are likely to perform efficient horizontal gene transfer. Viunalikeviruses therefore represent useful agents for functional genomics and bacterial engineering, and for chemical and synthetic biology studies, but could be viewed as inappropriate choices for phage therapy.
    The ISME Journal 08/2014; · 8.95 Impact Factor

Full-text (2 Sources)

View
22 Downloads
Available from
May 21, 2014