Article

Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin

Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA.
Nature Structural & Molecular Biology (Impact Factor: 11.63). 11/2011; 18(11):1250-8. DOI: 10.1038/nsmb.2148
Source: PubMed

ABSTRACT Tubulin tyrosine ligase (TTL) catalyzes the post-translational C-terminal tyrosination of α-tubulin. Tyrosination regulates recruitment of microtubule-interacting proteins. TTL is essential. Its loss causes morphogenic abnormalities and is associated with cancers of poor prognosis. We present the first crystal structure of TTL (from Xenopus tropicalis), defining the structural scaffold upon which the diverse TTL-like family of tubulin-modifying enzymes is built. TTL recognizes tubulin using a bipartite strategy. It engages the tubulin tail through low-affinity, high-specificity interactions, and co-opts what is otherwise a homo-oligomerization interface in structurally related ATP grasp-fold enzymes to form a tight hetero-oligomeric complex with the tubulin body. Small-angle X-ray scattering and functional analyses reveal that TTL forms an elongated complex with the tubulin dimer and prevents its incorporation into microtubules by capping the tubulin longitudinal interface, possibly modulating the partition of tubulin between monomeric and polymeric forms.

0 Followers
 · 
131 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microtubule dynamics is regulated by an array of microtubule associated proteins of which the microtubule plus-end tracking proteins (+TIPs) are prominent examples. +TIPs form dynamic interaction networks at growing microtubule ends in an EB1-dependent manner. The interaction between the C-terminal domain of EB1 and the CAP-Gly domains of the +TIP CLIP-170 depends on the last tyrosine residue of EB1. In the present study, we generated peptidic probes corresponding to the C-terminal tail of EB1 to affinity-capture binding partners from cell lysates. Using an MS-based approach, we showed that the last 15 amino-acid residues of EB1, either free or immobilized on beads, bound recombinant CAP-Gly domains of CLIP-170. We further demonstrate that this binding was prevented when the C-terminal tyrosine of EB1 was absent in the peptidic probes. Western blotting in combination with a label-free quantitative proteomic analysis revealed that the peptidic probe harboring the C-terminal tyrosine of EB1 effectively pulled-down proteins with CAP-Gly domains from endothelial cell extracts. Additional proteins known to interact directly or indirectly with EB1 and the microtubule cytoskeleton were also identified. Our peptidic probes represent valuable tools to detect changes induced in EB1-dependent +TIP networks by external cues such as growth factors and small molecules.
    Journal of proteomics 04/2012; 75(12):3605-16. DOI:10.1016/j.jprot.2012.04.006 · 3.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular microtubules are marked by abundant and evolutionarily conserved post-translational modifications that have the potential to tune their functions. This review focuses on the astonishing chemical complexity introduced in the tubulin heterodimer at the post-translational level and summarizes the recent advances in identifying the enzymes responsible for these modifications and deciphering the consequences of tubulin's chemical diversity on the function of molecular motors and microtubule associated proteins.
    Cytoskeleton 07/2012; 69(7):442-63. DOI:10.1002/cm.21027 · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of post-translational tubulin modifications in the development and maintenance of a polarized epithelium is not well understood. Here, we studied the balance between detyrosinated (detyr-) and tyrosinated (tyr-) tubulin in the formation of MDCK cell monolayers. Increased quantities of detyrosinated microtubules were detected during assembly into confluent cell sheets. These tubules were composed of alternating stretches of detyr- and tyr-tubulin. Constant induction of tubulin tyrosination, which decreased the levels of detyr-tubulin by overexpression of tubulin tyrosine ligase (TTL), disrupted monolayer establishment. Detyr-tubulin depleted cells assembled into isolated islands and developed a prematurely polarized architecture. Thus, tubulin detyrosination is required for the morphological differentiation from non-polarized cells into an epithelial monolayer. Moreover, membrane trafficking, in particular to the apical domain, was slowed down in TTL-overexpressing cells. This effect could be reversed by TTL knockdown, which suggests that detyr-tubulin-enriched microtubules serve as cytoskeletal tracks to guide membrane cargo in polarized MDCK cells.
    Journal of Cell Science 10/2012; 125(24). DOI:10.1242/jcs.109470 · 5.33 Impact Factor

Preview

Download
2 Downloads
Available from