Jarid1b targets genes regulating development and is involved in neural differentiation.

Biotech Research and Innovation Centre, University of Copenhagen, Denmark.
The EMBO Journal (Impact Factor: 10.75). 11/2011; 30(22):4586-600. DOI: 10.1038/emboj.2011.383
Source: PubMed

ABSTRACT H3K4 methylation is associated with active transcription and in combination with H3K27me3 thought to keep genes regulating development in a poised state. The contribution of enzymes regulating trimethylation of lysine 4 at histone 3 (H3K4me3) levels to embryonic stem cell (ESC) self-renewal and differentiation is just starting to emerge. Here, we show that the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) is dispensable for ESC self-renewal, but essential for ESC differentiation along the neural lineage. By genome-wide location analysis, we demonstrate that Jarid1b localizes predominantly to transcription start sites of genes encoding developmental regulators, of which more than half are also bound by Polycomb group proteins. Virtually all Jarid1b target genes are associated with H3K4me3 and depletion of Jarid1b in ESCs leads to a global increase of H3K4me3 levels. During neural differentiation, Jarid1b-depleted ESCs fail to efficiently silence lineage-inappropriate genes, specifically stem and germ cell genes. Our results delineate an essential role for Jarid1b-mediated transcriptional control during ESC differentiation.


Available from: Kristian Helin, Jun 24, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroblastoma (NB) is a common neural crest-derived extracranial solid cancer in children. Among all childhood cancers, NB causes devastating loss of young lives as it accounts for 15% of childhood cancer mortality. Neuroblastoma, especially high-risk stage 4 NB with MYCN amplification has limited treatment options and associated with poor prognosis. This necessitates the need for novel effective therapeutic strategy. JARID1B, also known as KDM5B, is a histone lysine demethylase, identified as an oncogene in many cancer types. Clinical data obtained from freely-accessible databases show a negative correlation between JARID1B expression and survival rates. Here, we demonstrated for the first time the role of JARID1B in the enhancement of stem cell-like activities and drug resistance in NB cells. We showed that JARID1B may be overexpressed in either MYCN amplification (SK-N-BE(2)) or MYCN-non-amplified (SK-N-SH and SK-N-FI) cell lines. JARID1B expression was found enriched in tumor spheres of SK-N-BE(2) and SK-N-DZ. Moreover, SK-N-BE(2) spheroids were more resistant to chemotherapeutics as compared to parental cells. In addition, we demonstrated that JARID1B-silenced cells acquired a decreased propensity for tumor invasion and tumorsphere formation, but increased sensitivity to cisplatin treatment. Mechanistically, reduced JARID1B expression led to the downregulation of Notch/Jagged signaling. Collectively, we provided evidence that JARID1B via modulation of stemness-related signaling is a putative novel therapeutic target for treating malignant NB.
    PLoS ONE 05/2015; 10(5):e0125343. DOI:10.1371/journal.pone.0125343 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells can self-renew and differentiate into multiple cell types. These characteristics are maintained by the combination of specific signaling pathways and transcription factors that cooperate to establish a unique epigenetic state. Despite the broad interest of these mechanisms, the precise molecular controls by which extracellular signals organize epigenetic marks to confer multipotency remain to be uncovered. Here, we use human embryonic stem cells (hESCs) to show that the Activin-SMAD2/3 signaling pathway cooperates with the core pluripotency factor NANOG to recruit the DPY30-COMPASS histone modifiers onto key developmental genes. Functional studies demonstrate the importance of these interactions for correct histone 3 Lys4 trimethylation and also self-renewal and differentiation. Finally, genetic studies in mice show that Dpy30 is also necessary to maintain pluripotency in the pregastrulation embryo, thereby confirming the existence of similar regulations in vivo during early embryonic development. Our results reveal the mechanisms by which extracellular factors coordinate chromatin status and cell fate decisions in hESCs. © 2015 Bertero et al.; Published by Cold Spring Harbor Laboratory Press.
    Genes & development 03/2015; 29(7). DOI:10.1101/gad.255984.114 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PLU-1/JARID1B (jumonji AT rich interactive domain 1B) is one of the testis cancer antigens and functions as a histone demethylase in the regulation of various human types of cancers. However, its functions in head and neck squamous cell carcinoma (HNSCC) are rarely reported. The aim of the present study was to examine PLU-1/JARID1B expression levels in HNSCCs and to investigate its role in cancer cell proliferation. In the present study, we found that PLU-1/JARID1B mRNA was upregulated in all tested HNSCC cell lines. Immunohistochemical staining showed that PLU-1/JARID1B protein expression was detected in 87.8% (87/99) of the HNSCC cases. A positive association was observed between high PLU-1/JARID1B expression and higher Ki-67 labeling in the HNSCC samples (Pearson r=0.6514, P=0.0003). Stable PLU-1/JARID1B knockdown by PLU-1-shRNAs in the HNSCC cell lines suppressed cell growth both in the in vitro and in vivo studies. Moreover, PLU-1/JARID1B knockdown resulted in G1 arrest and early apoptosis by suppressing Bcl-2 family members in the HNSCCs. These data indicate that PLU-1/JARID1B is overexpressed in HNSCCs and is associated with tumor proliferation and apoptosis. Therefore, PLU-1/JARID1B represents a candidate proliferation biomarker for HNSCC diagnosis and treatment.
    Oncology Reports 03/2015; DOI:10.3892/or.2015.3849 · 2.19 Impact Factor