Article

Failure to detect production of IL-10 by activated human neutrophils.

Nature Immunology (Impact Factor: 26.2). 11/2011; 12(11):1017-8; author reply 1018-20. DOI:10.1038/ni.2111
Source: PubMed
0 0
 · 
0 Bookmarks
 · 
80 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The tumor microenvironment is a complex framework, in which myeloid cells play important roles in sculpting cancer development from tumor initiation to metastasis. Immune cells are key participants of the tumor microenvironment where they can promote or inhibit cancer formation and development. Plasticity is a widely accepted hallmark of myeloid cells and in particular of the monocyte-macrophage lineage. It includes the ability to display a wide spectrum of activation states in response to distinct signals and classical M1 or alternative M2 macrophages represent a paradigm of this feature. Neutrophils have long been viewed as terminally differentiated effector cells, playing a major role during the acute phase of inflammation and resistance against microbes. Recent evidence questioned this limited point of view, indicating that neutrophils can interact with distinct cell populations and produce a wide number of cytokines and effector molecules. Therefore, macrophages and neutrophils are both integrated in the regulation of the innate and adaptive immune responses in various inflammatory situations, including cancer.
    Immunobiology 06/2013; · 2.81 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10-20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellular pathogens such as viruses and mycobacteria. They have been shown to intimately shape the adaptive immune response at various levels, including marginal zone B cells, plasmacytoid dendritic cells and T cell populations, and even to control NK cell homeostasis. Neutrophils have been shown to mediate an alternative pathway of systemic anaphylaxis and to participate in allergic skin reactions. Finally, neutrophils were found to be involved in physiological and pathological processes beyond the immune system, such as diabetes, atherosclerosis, and thrombus formation. Many of those functions appear to be related to their unique ability to release neutrophil extracellular traps even in the absence of pathogens. This review summarizes those novel findings on versatile functions of neutrophils and how they change our view of neutrophil biology in health and disease.
    Journal of Experimental Medicine 07/2013; 210(7):1283-99. · 13.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Cells belonging to the innate immune system, including neutrophils, rapidly respond to invading microorganisms by recognizing a wide range of microbial-derived products referred to as pathogen-associated molecular patterns (PAMPs). Generally speaking, PAMPs include molecular structures associated with microbial envelopes (such as bacterial lipopolysaccharide, lipoproteins, and flagellin) and microbial nucleic acids. PAMPs bind to and activate various families of germline-encoded receptors carried by cells of the innate immune system, known as pattern-recognition receptors (PRRs). This group of receptors, located in various subcellular compartments, in turn generates a series of intracellular signaling pathways that coordinately modulate the transcription of hundreds of inflammatory genes, the products of which directly control infection and/or contribute to promote the development of the innate and adaptive immune responses. Herein, we summarize current knowledge on neutrophil recognition and response to foreign cytoplasmic nucleic acids.
    Current Opinion in Pharmacology 05/2013; · 5.44 Impact Factor