Article

Differential effects of dietary protein sources on postprandial low-grade inflammation after a single high fat meal in obese non-diabetic subjects

Department of Endocrinology and Metabolism MEA, Aarhus University Hospital, Aarhus, Denmark.
Nutrition Journal (Impact Factor: 2.64). 10/2011; 10:115. DOI: 10.1186/1475-2891-10-115
Source: PubMed

ABSTRACT Obesity is a state of chronic low-grade inflammation. Chronic low-grade inflammation is associated with the pathophysiology of both type-2 diabetes and atherosclerosis. Prevention or reduction of chronic low-grade inflammation may be advantageous in relation to obesity related co-morbidity. In this study we investigated the acute effect of dietary protein sources on postprandial low-grade inflammatory markers after a high-fat meal in obese non-diabetic subjects.
We conducted a randomized, acute clinical intervention study in a crossover design. We supplemented a fat rich mixed meal with one of four dietary proteins - cod protein, whey isolate, gluten or casein. 11 obese non-diabetic subjects (age: 40-68, BMI: 30.3-42.0 kg/m2) participated and blood samples were drawn in the 4 h postprandial period. Adiponectin was estimated by ELISA methods and cytokines were analyzed by multiplex assay.
MCP-1 and CCL5/RANTES displayed significant postprandial dynamics. CCL5/RANTES initially increased after all meals, but overall CCL5/RANTES incremental area under the curve (iAUC) was significantly lower after the whey meal compared with the cod and casein meals (P = 0.0053). MCP-1 was initially suppressed after all protein meals. However, the iAUC was significantly higher after whey meal compared to the cod and gluten meals (P = 0.04).
We have demonstrated acute differential effects on postprandial low grade inflammation of four dietary proteins in obese non-diabetic subjects. CCL5/RANTES initially increased after all meals but the smallest overall postprandial increase was observed after the whey meal. MCP-1 was initially suppressed after all 4 protein meals and the whey meal caused the smallest overall postprandial suppression.
ClinicalTrials.gov ID: NCT00863564.

1 Follower
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research examining immune function during obesity suggests that excessive adiposity is linked to impaired immune responses leading to pathology. The deleterious effects of obesity on immunity have been associated with the systemic proinflammatory profile generated by the secretory molecules derived from adipose cells. These include inflammatory peptides, such as TNF- α , CRP, and IL-6. Consequently, obesity is now characterized as a state of chronic low-grade systemic inflammation, a condition considerably linked to the development of comorbidity. Given the critical role of adipose tissue in the inflammatory process, especially in obese individuals, it becomes an important clinical objective to identify lifestyle factors that may affect the obesity-immune system relationship. For instance, stress, physical activity, and nutrition have each shown to be a significant lifestyle factor influencing the inflammatory profile associated with the state of obesity. Therefore, the purpose of this review is to comprehensively evaluate the impact of lifestyle factors, in particular psychological stress, physical activity, and nutrition, on obesity-related immune function with specific focus on inflammation.
    The Scientific World Journal 11/2013; 2013:752071. DOI:10.1155/2013/752071 · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dietary fibers are associated with enhanced satiety. However, the mechanism of different dietary fibers contributing to satiety-related gastrointestinal (GI) peptide release, especially in an obese population, is still poorly understood. Polydextrose (PDX), a water-soluble glucose polymer, has demonstrated its ability to reduce energy intake at a subsequent meal, but its mechanism of action requires further research. Also, there is limited evidence on its capacity to regulate subjective feelings of appetite. This study examines the effects of PDX on postprandial secretion of satiety-related GI peptides, short chain fatty acids (SCFAs), lactic acid, and subjective appetite ratings in obese participants. 18 non-diabetic, obese participants (42.0 y, 33.6 kg/m2) consumed a high-fat meal (4293 kJ, 36% from fat) with or without PDX (15 g) in an acute, multicenter, randomized, double-blind, placebo-controlled and crossover trial. Postprandial plasma concentrations of satiety-related peptides, namely ghrelin, cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and peptide YY (PYY), as well as SCFAs and lactic acid were assessed. GI peptide, SCFA and lactate concentrations were then modeled using a linear mixed-effects model.The subjective feelings of hunger, satisfaction, and desire to eat were evaluated using visual analogue scales (VAS), which were analyzed as incremental areas under the curve (iAUC) during the satiation and satiety periods. We found that PDX supplementation increased plasma GLP-1 levels more than the placebo treatment (P = 0.02). In the whole group, GLP-1 concentrations found in participants older than 40 years old were significantly lower (P = 0.01) as compared to those aged 40 years or less. There were no statistically significant differences in postprandial ghrelin, CCK, or PYY responses. The lactic acid concentrations were significantly (P = 0.01) decreased in the PDX group, while no significant changes in SCFAs were found. PDX reduced iAUC for hunger by 40% (P = 0.03) and marginally increased satisfaction by 22.5% (P = 0.08) during the post-meal satiety period. Polydextrose increased the postprandial secretion of the satiety hormone GLP-1 and reduced hunger after a high-fat meal. PDX also reduced the elevated postprandial lactic acid levels in plasma. Therefore, PDX may offer an additional means to regulate inter-meal satiety and improve postprandial metabolism in obese participants.
    Nutrition Journal 01/2015; 14(1):2. DOI:10.1186/1475-2891-14-2 · 2.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological evidence shows that consumption of dairy products is associated with decreased prevalence of metabolic related disorders, whilst evidence from experimental studies points towards dairy protein as a dietary component which may aid prevention of type 2 diabetes (T2DM). Poor metabolic health is a common characteristic of overweight, obesity and aging, and is the forerunner of T2DM and cardiovascular disease (CVD), and an ever increasing global health issue. Progressive loss of metabolic control is evident from a blunting of carbohydrate, fat and protein metabolism, which is commonly manifested through decreased insulin sensitivity, inadequate glucose and lipid control, accompanied by a pro-inflammatory environment and hypertension. Adverse physiological changes such as excess visceral adipose tissue deposition and expansion, lipid overspill and infiltration into liver, muscle and other organs, and sarcopaenia or degenerative loss of skeletal muscle mass and function all underpin this adverse profile. 'Sarcobesity' and sarcopaenic diabetes are rapidly growing health issues. As well as through direct mechanisms, dairy protein may indirectly improve metabolic health by aiding loss of body weight and fat mass through enhanced satiety, whilst promoting skeletal muscle growth and function through anabolic effects of dairy protein-derived branch chain amino acids (BCAAs). BCAAs enhance muscle protein synthesis, lean body mass and skeletal muscle metabolic function. The composition and processing of dairy protein has an impact on digestion, absorption, BCAA kinetics and function, hence the optimisation of dairy protein composition through selection and combination of specific protein components in milk may provide a way to maximize benefits for metabolic health.
    Nutrition & Metabolism 07/2013; 10(1):46. DOI:10.1186/1743-7075-10-46 · 3.36 Impact Factor

Preview (2 Sources)

Download
0 Downloads
Available from