Cyclophosphamide Perturbs Cytosine Methylation in Jurkat-T Cells through LSD1-Mediated Stabilization of DNMT1 Protein

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
Chemical Research in Toxicology (Impact Factor: 3.53). 11/2011; 24(11):2040-3. DOI: 10.1021/tx2003849
Source: PubMed


Aberrant cytosine methylation is known to be associated with cancer development. Here, we assessed how common cancer chemotherapeutic agents perturb cytosine methylation in Jurkat-T acute lymphoblastic leukemia cells. We tested six antitumor agents and found that cyclophosphamide induced the most pronounced increase in global DNA cytosine methylation after a 24-h treatment. Long-term treatment with cyclophosphamide led to a time-dependent increase in cytosine methylation level with up to 4 days of treatment, and the extent of cytosine methylation returned to normal level after 8 days. The trend of change in DNA methylation level paralleled that of the expression level of DNMT1 protein, whereas no significant increase in DNMT1 mRNA level was observed. Previous studies showed that the stability of endogenous DNMT1 protein is regulated by lysine methylation through histone lysine methyltransferase Set7 and lysine-specific demethylase 1 (LSD1), with the methylated DNMT1 being the target for proteasomal degradation. We observed that the elevated expression of DNMT1 protein at 4 days of treatment was correlated with the increased expression of LSD1 protein and with the decreased frequency of K142 methylation in DNMT1. Taken together, our results showed that cyclophosphamide perturbed temporarily global cytosine methylation in Jurkat-T cells via regulation of the lysine methylation level in DNMT1.

Download full-text


Available from: Bi-Feng Yuan, Oct 12, 2015
1 Follower
18 Reads
  • Source
    • "During the above enrichment, 5-methyl-2’-deoxycytidine (5-mdC) could also be resolved from other nucleosides. The levels of 5-mdC, expressed as percentage of dG, were quantified based on the peak areas of 5-mdC and dG found in the chromatogram with the consideration of the extinction coefficients of the two nucleosides at 260 nm (5020 and 11 700 L mol−1 cm−1 for 5-mdC and dG, respectively) (28,29). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies showed that Ten-eleven translocation (Tet) family dioxygenases can oxidize 5-methyl-2'-deoxycytidine (5-mdC) in DNA to yield the 5-hydroxymethyl, 5-formyl and 5-carboxyl derivatives of 2'-deoxycytidine (5-HmdC, 5-FodC and 5-CadC). 5-HmdC in DNA may be enzymatically deaminated to yield 5-hydroxymethyl-2'-deoxyuridine (5-HmdU). After their formation at CpG dinucleotide sites, these oxidized pyrimidine nucleosides, particularly 5-FodC, 5-CadC, and 5-HmdU, may be cleaved from DNA by thymine DNA glycosylase, and subsequent action of base-excision repair machinery restores unmethylated cytosine. These processes are proposed to be important in active DNA cytosine demethylation in mammals. Here we used a reversed-phase HPLC coupled with tandem mass spectrometry (LC-MS/MS/MS) method, along with the use of stable isotope-labeled standards, for accurate measurements of 5-HmdC, 5-FodC, 5-CadC and 5-HmdU in genomic DNA of cultured human cells and multiple mammalian tissues. We found that overexpression of the catalytic domain of human Tet1 led to marked increases in the levels of 5-HmdC, 5-FodC and 5-CadC, but only a modest increase in 5-HmdU, in genomic DNA of HEK293T cells. Moreover, 5-HmdC is present at a level that is approximately 2-3 and 3-4 orders of magnitude greater than 5-FodC and 5-CadC, respectively, and 35-400 times greater than 5-HmdU in the mouse brain and skin, and human brain. The robust analytical method built a solid foundation for dissecting the molecular mechanisms of active cytosine demethylation, for measuring these 5-mdC derivatives and assessing their involvement in epigenetic regulation in other organisms and for examining whether these 5-mdC derivatives can be used as biomarkers for human diseases.
    Nucleic Acids Research 05/2013; 41(13). DOI:10.1093/nar/gkt360 · 9.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pediatric cancer survivors have increased risk of obesity, hypertension, dyslipidemia, and type 2 diabetes, leading to premature cardiovascular disease (CVD). Multiple tissues that are involved in glucose homeostasis and lipid metabolism are adversely affected by chemotherapy. This review highlights the relevant tissue and molecular end-organ effects of therapy exposures and synthesizes the current understanding of the mechanisms underlying CVD risk in this vulnerable population. The review also approaches the topic from a developmental perspective, with the goal of providing a translational approach to identifying the antecedents of overt CVD among survivors of pediatric cancer. Pediatr Blood Cancer © 2013 Wiley Periodicals, Inc.
    Pediatric Blood & Cancer 07/2013; 60(12). DOI:10.1002/pbc.24703 · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large-scale characterization of post-translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, has highlighted their importance in the regulation of a myriad of signaling events. While high-throughput technologies have tremendously helped cataloguing the proteins modified by these PTMs, the identification of lysine-methylated proteins, a PTM involving the transfer of one, two or three methyl groups to the ε-amine of a lysine side chain, has lagged behind. While the initial findings were focused on the methylation of histone proteins, several studies have recently identified novel non-histone lysine-methylated proteins. This review provides a compilation of all lysine methylation sites reported to date. We also present key examples showing the impact of lysine methylation and discuss the circuitries wired by this important PTM.
    Molecular Systems Biology 04/2014; 10(4). DOI:10.1002/msb.134974 · 10.87 Impact Factor
Show more