Article

Regulation of breast cancer-induced bone lesions by β-catenin protein signaling.

Department of Molecular Pharmacology and Biological Chemistry, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 12/2011; 286(49):42575-84. DOI: 10.1074/jbc.M111.294595
Source: PubMed

ABSTRACT Breast cancer patients have an extremely high rate of bone metastases. Morphological analyses of the bones in most of the patients have revealed the mixed bone lesions, comprising both osteolytic and osteoblastic elements. β-Catenin plays a key role in both embryonic skeletogenesis and postnatal bone regeneration. Although this pathway is also involved in many bone malignancy, such as osteosarcoma and prostate cancer-induced bone metastases, its regulation of breast cancer bone metastases remains unknown. Here, we provide evidence that the β-catenin signaling pathway has a significant impact on the bone lesion phenotype. In this study, we established a novel mouse model of mixed bone lesions using intratibial injection of TM40D-MB cells, a breast cancer cell line that is highly metastatic to bone. We found that both upstream and downstream molecules of the β-catenin pathway are up-regulated in TM40D-MB cells compared with non-bone metastatic TM40D cells. TM40D-MB cells also have a higher T cell factor (TCF) reporter activity than TM40D cells. Inactivation of β-catenin in TM40D-MB cells through expression of a dominant negative TCF4 not only increases osteoclast differentiation in a tumor-bone co-culture system and enhances osteolytic bone destruction in mice, but also inhibits osteoblast differentiation. Surprisingly, although tumor cells overexpressing β-catenin did induce a slight increase of osteoblast differentiation in vitro, these cells display a minimal effect on osteoblastic bone formation in mice. These data collectively demonstrate that β-catenin acts as an important determinant in mixed bone lesions, especially in controlling osteoblastic effect within tumor-harboring bone environment.

0 Followers
 · 
138 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteosarcoma is the most common malignant bone tumor in children and adolescents. Although pathologic characteristics of this disease are clear and well established, much remains to be understood about this tumor, particularly at the molecular signaling level. Secreted signaling molecules of the Wnt family have been widely investigated and found to play a central role in controlling embryonic bone development, bone mass and postnatal bone regeneration. A variety of studies also suggest that Wnt signaling pathway is closely associated with bone malignancies, including breast or prostate cancer induced bone metastasis, multiple myeloma, as well as osteosarcoma. Here, we provide an overview of the role of Wnt signaling pathway in osteosarcoma development and progression, highlighting the aberrant activation of Wnt pathway in this bone malignancy. We also discuss the potential therapeutic applications for the treatment of osteosarcoma targeting Wnt pathway. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Biochemistry 04/2014; 115(4). DOI:10.1002/jcb.24708 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-to-mesenchymal transition (EMT) is a crucial event involved metastasis of certain tumors. Thus, identifying chemical agents that can block EMT is highly warranted for the development of anti-cancer chemoprevention/chemotherapies. In this study, we found that Antrodin C (ADC), a maleimide derivative isolated from Antrodia cinnamomea health food product inhibits TGF-β1-induced EMT and breast cancer cell metastasis in vitro. Pretreatment of MCF-7 cells with ADC significantly blocked TGF-β1-induced phenotypic changes and actin cytoskeleton remodeling. In addition, ADC was able to up-regulate epithelial markers such as E-cadherin and occludin, whereas mesenchymal markers including N-cadherin and vimentin were significantly inhibited, possibly through the modulation of transcriptional regulators Smad/Smad3. ADC blocked TGF-β1-induced migration and invasion of MCF-7 cells through the down-regulation of matrix-metalloproteinases (MMP-2, -9) and urokinase plasminogen activator (uPA). The inhibition of MMPs and uPA activity by ADC was reasoned by suppression of its corresponding transcription factor β-catenin. Taken together, our data suggested that ADC attenuates the TGF-β1-induced EMT, migration and invasion of human breast carcinoma through the suppression of Smad2/3 and β-catenin signaling pathways.
    PLoS ONE 02/2015; 10(2):e0117111. DOI:10.1371/journal.pone.0117111 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer remains a major worldwide health problem and patients have high rate of metastasis including bone. Although pathologic characteristics of this disease are clear and well established, much remains to be understood about this tumor, particularly at the molecular signaling level. Secreted signaling molecules of the Wnt family have been widely investigated and found to play a prominent role to induce human malignant diseases, such as breast and prostate cancer. A variety of studies have also demonstrated that the Wnt signaling pathway is closely associated with bone malignancies including osteosarcoma, multiple myeloma, and breast or prostate cancer induced bone metastasis. The aim of this review is to provide a summary regarding the role of the Wnt signaling pathway in lung cancer and bone metastasis, highlighting the aberrant activation of Wnt in this malignancy. We also discuss the potential therapeutic applications for the treatment of lung cancer and cancer induced bone metastasis targeting the Wnt pathway.
    Cancer Letters 10/2014; DOI:10.1016/j.canlet.2014.07.010 · 5.02 Impact Factor