Article

Characterization of novel peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoform in human liver.

Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria.
Journal of Biological Chemistry (Impact Factor: 4.6). 12/2011; 286(50):42923-36. DOI: 10.1074/jbc.M111.227496
Source: PubMed

ABSTRACT Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a transcriptional coactivator that contributes to the regulation of numerous transcriptional programs including the hepatic response to fasting. Mechanisms at transcriptional and post-transcriptional levels allow PGC-1α to support distinct biological pathways. Here we describe a novel human liver-specific PGC-1α transcript that results from alternative promoter usage and is induced by FOXO1 as well as glucocorticoids and cAMP-response element-binding protein signaling but is not present in other mammals. Hepatic tissue levels of novel and wild-type transcripts were similar but were only moderately associated (p < 0.003). Novel mRNA levels were associated with a polymorphism located in its promoter region, whereas wild-type transcript levels were not. Furthermore, hepatic PCK1 mRNA levels exhibited stronger associations with the novel than with the wild-type transcript levels. Except for a deletion of 127 amino acids at the N terminus, the protein, termed L-PGC-1α, is identical to PGC-1α. L-PGC-1α was localized in the nucleus and showed coactivation properties that overlap with those of PGC-1α. Collectively, our data support a role of L-PGC-1α in gluconeogenesis, but functional differences predicted from the altered structure suggest that L-PGC-1α may have arisen to adapt PGC-1α to more complex metabolic pathways in humans.

0 Followers
 · 
276 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary biliary cirrhosis (PBC) is characterised by antimitochondrial antibody against the pyruvate dehydrogenase complex (PDC) and chronic non-suppurative destructive cholangitis (CNSDC). Pyruvate oxidation to acetyl-CoA by PDC is a key step in the glycolytic system. Oestrogen-related receptor-α (ERRα) is functionally activated by inducible coactivators such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and Bcl-3. Moreover, the PGC-1α-ERRα axis interrupts glycolytic metabolism through the upregulation of pyruvate dehydrogenase kinase, isozyme 4 (PDK4), which functionally inhibits PDC-E1α and stimulates fatty acid oxidation. In this study, we investigated the PGC-1α-ERRα axis to clarify PDC dysfunction in CNSDC of PBC. The expression of PGC-1α, Bcl-3, ERRα, PDK4 and PDC-E1α was examined by immunohistochemistry in liver sections from patients with PBC and controls. The expression of these molecules, the activity of mitochondrial dehydrogenase and PDC, and their alterations by starvation, a treatment used to induce PGC-1α expression, were examined in cultured human biliary epithelial cells (BECs). The nuclear expression of PGC-1α, Bcl-3 and ERRα was exclusively observed in CNSDC of PBC. Moreover, the expression of PDK4 and PDC-E1α was enhanced in CNSDC of PBC. In cultured BECs, the amplification of Bcl-3 and PDK4 mRNAs by reverse-transcription-PCR and mitochondrial dehydrogenase activity were markedly increased but PDC activity was decreased according to the upregulation of PGC-1α. In CNSDC of PBC, the activation of the ERRα-PGC-1α axis was exclusively observed, suggesting the interference of PDC-related glycolytic function and the induction of the fatty acid degradation system. The switching of the cellular energy system is possibly associated with the pathogenesis of CNSDC in PBC.
    Journal of clinical pathology 11/2013; 67(5). DOI:10.1136/jclinpath-2013-201815 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) causes not only severe liver problems but also extra hepatic manifestations, such as insulin resistance (IR). Wild-type (WT)-peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is essential in hepatic gluconeogenesis and has recently been demonstrated to link HCV infection to hepatic insulin resistance (IR). A recent study has characterized a novel human liver-specific PGC-1α (L-PGC-1α) transcript, which is proposed to reflect human adaption to more complex pathways. However, the effect of HCV infection on L-PGC-1α expression and the mechanism by which HCV modulates WT-PGC-1α/L-PGC-1α remain unclear. In this study, we showed that HCV infection upregulated both WT-PGC-1α and L-PGC-1α, which further promoted HCV production. The upregulation of both PGC-1α isoforms depended on HCV RNA replication. By using promoter-luciferase reporters, kinase inhibitors, and dominant-negative mutants, we further observed that the HCV-induced upregulation of WT-PGC-1α was mediated by the phosphorylation of cAMP-response element-binding protein (CREB) whereas that of L-PGC-1α was mediated by CREB phosphorylation and forkhead box O1 dephosphorylation. Moreover, HCV infection induced endoplasmic reticulum (ER) stress and pharmacological induction of ER stress upregulated WT-PGC-1α/L-PGC-1α and phosphorylated CREB. By contrast, pharmacological inhibition of HCV-induced ER stress impaired WT-PGC-1α/L-PGC-1α upregulation along with decreased phosphorylated CREB. The correlation of hepatic mPGC-1α with ER stress was further confirmed in mice. Overall, HCV infection upregulates both WT-PGC-1α and L-PGC-1α through an ER stress-mediated, phosphorylated CREB-dependent pathway and both PGC-1α isoforms promote HCV production in turn. HCV causes not only severe liver problems but also extra hepatic manifestations, such as insulin resistance (IR). As a key regulator in energy metabolism, wild-type (WT)-PGC-1α has recently been demonstrated to link HCV infection to hepatic IR. A recent study has characterized a novel human liver-specific PGC-1α (L-PGC-1α), which reflects human adaption to more complex pathways. However, the effect of HCV infection on L-PGC-1α expression and the mechanism by which HCV regulates WT-PGC-1α/L-PGC-1α remain unclear. In this study, we showed that HCV infection upregulated both WT-PGC-1α and L-PGC-1α, which further promoted HCV production. WT-PGC-1α upregulation was mediated by CREB phosphorylation, whereas L-PGC-1α upregulation was mediated by CREB phosphorylation and FoxO1 dephosphorylation. HCV-induced ER stress mediated WT-PGC-1α/L-PGC-1α upregulation and CREB phosphorylation. Overall, this study provides new insights into the mechanism by which HCV upregulates WT-PGC-1α/L-PGC-1α and highlights the novel intervention of HCV-ER stress-PGC-1α signaling for HCV therapy and HCV-induced IR therapy.
    Journal of Virology 05/2014; 88(15). DOI:10.1128/JVI.01202-14 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to investigate the effect of acute aerobic exercise on the expression of PGC-1α transcript variants in human skeletal muscle. Seven endurance-trained athletes performed a 90-min cycling test (62 % of [Formula: see text]o2max). At resting state, the levels of N-truncated (NT)-PGC-1α and PGC-1α exon 1a-derived transcripts were significantly higher (>20-fold; P < 0.05) than those of PGC-1α exon 1b- and 1c-derived transcripts. Acute exercise did not change the PGC-1α exon 1a-derived expression level, but it did increase the expression level of NT-PGC-1α mRNAs 6-fold, and the expression levels of PGC-1α exon 1b- and 1c-derived mRNAs >200-fold (P < 0.05). We conclude that NT-PGC-1α transcript expression in resting muscle and after acute moderate-intensity exercise constituted a significant share of total PGC-1α expression. The exercise led to a higher level of PGC-1α expression from alternative promoters (exon 1b- and 1c-derived mRNA) than from the canonical proximal promoter (exon 1a-derived mRNA).
    The Journal of Physiological Sciences 06/2014; 64(5). DOI:10.1007/s12576-014-0321-z · 1.25 Impact Factor

Full-text

Download
62 Downloads
Available from
Jun 1, 2014