Article

A patatin-like protein protects Toxoplasma gondii from degradation in a nitric oxide-dependent manner.

Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA.
Infection and immunity (Impact Factor: 4.21). 01/2012; 80(1):55-61. DOI: 10.1128/IAI.05543-11
Source: PubMed

ABSTRACT Toxoplasma gondii is an obligate intracellular parasite that uses immune cells to disseminate throughout its host. T. gondii can persist and even slowly replicate in activated host macrophages by reducing the antimicrobial effects of molecules such as nitric oxide (NO). A T. gondii patatin-like protein called TgPL1 was previously shown to be important for survival in activated macrophages. Here we show that a T. gondii mutant with a deletion of the TgPL1 gene (ΔTgPL1) is degraded in activated macrophages. This degradation phenotype is abolished by the removal of NO by the use of an inducible NO synthase (iNOS) inhibitor or iNOS-deficient macrophages. The exogenous addition of NO to macrophages results in reduced parasite growth but not the degradation of ΔTgPL1 parasites. These results suggest that NO is necessary but not sufficient for the degradation of ΔTgPL1 parasites in activated macrophages. While some patatin-like proteins have phospholipase A2 (PLA2) activity, recombinant TgPL1 purified from Escherichia coli does not have phospholipase activity. This result was not surprising, as TgPL1 contains a G-to-S change at the predicted catalytic serine residue. An epitope-tagged version of TgPL1 partially colocalized with a dense granule protein in the parasitophorous vacuole space. These results may suggest that TgPL1 moves to the parasitophorous vacuole to protect parasites from nitric oxide by an undetermined mechanism.

0 Bookmarks
 · 
134 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The obligate intracellular parasite Toxoplasma gondii establishes a life-long chronic infection within any warm-blooded host. After ingestion of an encysted parasite, T. gondii disseminates throughout the body as a rapidly replicating form during acute infection. Over time and after stimulation of the host immune response, T. gondii differentiates into a slow growing, cyst form that is the hallmark of chronic infection. Global transcriptome analysis of both host and parasite during the establishment of chronic T. gondii infection has not yet been performed. Here, we conducted a dual RNA-seq analysis of T. gondii and its rodent host to better understand host and parasite responses during acute and chronic infection.
    BMC genomics. 09/2014; 15(1):806.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toxoplasma gondii is an obligate intracellular parasite that forms a lifelong infection within the central nervous system of its host. The T. gondii genome encodes six members of the patatin-like phospholipase family; related proteins are associated with host-microbe interactions in bacteria. T. gondii patatin-like protein 1 (TgPL1) was previously determined to be necessary for parasites to suppress nitric oxide and prevent degradation in activated macrophages. Here, we show that in the rapidly replicating tachyzoite stage, TgPL1 is localized within vesicles inside the parasite that are distinct from the dense granules; however, in the encysted bradyzoite stage, TgPL1 localizes to the parasitophorous vacuole (PV) and cyst wall. While we had not previously seen a defect of the TgPL1 deletion mutant (ΔTgPL1) during acute and early chronic infection, the localization change of TgPL1 in bradyzoites caused us to reevaluate the ΔTgPL1 mutant during late chronic infection and in a toxoplasmic encephalitis (TE) mouse model. Mice infected with ΔTgPL1 are more resistant to TE and have fewer inflammatory lesions than mice infected with the wild type and ΔTgPL1 genetically complemented with TgPL1. This increased resistance to TE could result from several contributing factors. First, we found that ΔTgPL1 bradyzoites did not convert back to tachyzoites readily in tissue culture. Second, a subset of cytokine levels were higher in ΔTgPL1-infected mice, including gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and monocyte chemotactic protein 1 (MCP-1). These studies suggest that TgPL1 plays a role in the maintenance of chronic T. gondii infection.
    Infection and immunity 02/2014; 82(2):618-25. · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fusidic acid is a bacteriostatic antibiotic that inhibits the growth of bacteria by preventing the release of translation elongation factor G (EF-G) from the ribosome. The apicomplexan parasite Toxoplasma gondii has an orthologue of bacterial EF-G that can complement bacteria and is necessary for parasite virulence. Fusidic acid has been shown to be effective in tissue culture against the related pathogen Plasmodium falciparum, and current drug treatments against T. gondii are limited. We therefore investigated the therapeutic value of fusidic acid for T. gondii and found that the drug was effective in tissue culture, but not in a mouse model of infection. To determine whether this trend would occur in another intracellular pathogen that elicits a T helper 1-type immune response, we tested the efficacy of fusidic acid for the bacterium Listeria monocytogenes. Similar to its effects on T. gondii, fusidic acid inhibits the growth of L. monocytogenes in vitro, but not in mice. These findings highlight the necessity of in vivo follow-up studies to validate in vitro drug investigations.
    Parasitology Research 08/2013; · 2.85 Impact Factor

Full-text (2 Sources)

Download
16 Downloads
Available from
May 29, 2014