Article

A patatin-like protein protects Toxoplasma gondii from degradation in a nitric oxide-dependent manner.

Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA.
Infection and immunity (Impact Factor: 4.16). 01/2012; 80(1):55-61. DOI: 10.1128/IAI.05543-11
Source: PubMed

ABSTRACT Toxoplasma gondii is an obligate intracellular parasite that uses immune cells to disseminate throughout its host. T. gondii can persist and even slowly replicate in activated host macrophages by reducing the antimicrobial effects of molecules such as nitric oxide (NO). A T. gondii patatin-like protein called TgPL1 was previously shown to be important for survival in activated macrophages. Here we show that a T. gondii mutant with a deletion of the TgPL1 gene (ΔTgPL1) is degraded in activated macrophages. This degradation phenotype is abolished by the removal of NO by the use of an inducible NO synthase (iNOS) inhibitor or iNOS-deficient macrophages. The exogenous addition of NO to macrophages results in reduced parasite growth but not the degradation of ΔTgPL1 parasites. These results suggest that NO is necessary but not sufficient for the degradation of ΔTgPL1 parasites in activated macrophages. While some patatin-like proteins have phospholipase A2 (PLA2) activity, recombinant TgPL1 purified from Escherichia coli does not have phospholipase activity. This result was not surprising, as TgPL1 contains a G-to-S change at the predicted catalytic serine residue. An epitope-tagged version of TgPL1 partially colocalized with a dense granule protein in the parasitophorous vacuole space. These results may suggest that TgPL1 moves to the parasitophorous vacuole to protect parasites from nitric oxide by an undetermined mechanism.

Download full-text

Full-text

Available from: Crystal Tobin Magle, Jul 06, 2015
0 Followers
 · 
152 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The alveolate superphylum includes many free-living and parasitic organisms, which are united by the presence of alveolar sacs lying proximal to the plasma membrane, providing cell structure. All species comprising the apicomplexan group of alveolates are parasites and have adapted to the unique requirements of the parasitic lifestyle. Here the evolution of apicomplexan secretory organelles that are involved in the critical process of egress from one cell and invasion of another is explored. The variations within the Apicomplexa and how these relate to species-specific biology will be discussed. In addition, recent studies have identified specific calcium-sensitive molecules that coordinate the various events and regulate the release of these secretory organelles within apicomplexan parasites. Some aspects of this machinery are conserved outside the Apicomplexa, and are beginning to elucidate the conserved nature of the machinery. Briefly, the relationship of this secretion machinery within the Apicomplexa will be discussed, compared with free-living and predatory alveolates, and how these might have evolved from a common ancestor.
    International journal for parasitology 10/2012; 42(12). DOI:10.1016/j.ijpara.2012.09.009 · 3.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intracellular protozoan parasite Toxoplasma gondii is capable of invading any nucleated cell and replicates within a parasitophorous vacuole (PV). This microenvironment is modified by secretory proteins from organelles named rhoptries and dense granules. In this report, we identify a novel dense granule protein, which we refer to as GRA22. GRA22 has no significant homology to any other known proteins. GRA22 possesses a signal peptide at the N-terminal end which is responsible for dense granule and PV localization. The RH strain GRA22 contains 12 copies of tandem repeats consisting each of 21 amino acids located between the 42nd and 293rd amino acid residues from a full length of 624 amino acids. On the other hand, ME49 strain GRA22 has 10 copies of tandem repeats. The Neospora caninum GRA22 ortholog completely lacks this repetitive sequence. GRA22 knock out parasites show a similar growth rate as the parental strain. However, the timing of egress is earlier than that of the parental strain. These results suggest that GRA22 is involved in regulating parasite egress in T. gondii.
    Molecular and Biochemical Parasitology 04/2013; 189(1-2). DOI:10.1016/j.molbiopara.2013.04.005 · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxoplasma gondii is an intracellular parasite that transitions from acute infection to a chronic infective state in its intermediate host via encystation, which enables the parasite to evade immune detection and clearance. It is widely accepted that the tissue cyst perimeter is highly and specifically decorated with glycan modifications; however, the role of these modifications in the establishment and persistence of chronic infection has not been investigated. Here we identify and biochemically and biologically characterize a Toxoplasma nucleotide-sugar transporter (TgNST1) that is required for cyst wall glycosylation. Toxoplasma strains deleted for the TgNST1 gene (Δnst1) form cyst-like structures in vitro but no longer interact with lectins, suggesting that Δnst1 strains are deficient in the transport and use of sugars for the biosynthesis of cyst-wall structures. In vivo infection experiments demonstrate that the lack of TgNST1 activity does not detectably impact the acute (tachyzoite) stages of an infection or tropism of the parasite for the brain but that Δnst1 parasites are severely defective in persistence during the chronic stages of the infection. These results demonstrate for the first time the critical role of parasite glycoconjugates in the persistence of Toxoplasma tissue cysts.
    PLoS Pathogens 05/2013; 9(5):e1003331. DOI:10.1371/journal.ppat.1003331 · 8.06 Impact Factor