Article

Sex-linked transcription factor involved in a shift of sex-pheromone preference in the silkmoth Bombyx mori.

Laboratory of Insect Genetics and Bioscience, Department of Agricultural and Environmental Biology, University of Tokyo, Tokyo 113-8657, Japan.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2011; 108(44):18038-43. DOI: 10.1073/pnas.1107282108
Source: PubMed

ABSTRACT In the sex-pheromone communication systems of moths, odorant receptor (Or) specificity as well as higher olfactory information processing in males should be finely tuned to the pheromone of conspecific females. Accordingly, male sex-pheromone preference should have diversified along with the diversification of female sex pheromones; however, the genetic mechanisms that facilitated the diversification of male preference are not well understood. Here, we explored the mechanisms involved in a drastic shift in sex-pheromone preference in the silkmoth Bombyx mori using spli mutants in which the genomic structure of the gene Bmacj6, which encodes a class IV POU domain transcription factor, is disrupted or its expression is repressed. B. mori females secrete an ∼11:1 mixture of bombykol and bombykal. Bombykol alone elicits full male courtship behavior, whereas bombykal alone shows no apparent activity. In the spli mutants, the behavioral responsiveness of males to bombykol was markedly reduced, whereas bombykal alone evoked full courtship behavior. The reduced response of spli males to bombykol was explained by the paucity of bombykol receptors on the male antennae. It was also found that, in the spli males, neurons projecting into the toroid, a compartment in the brain where bombykol receptor neurons normally project, responded strongly to bombykal. The present study highlights a POU domain transcription factor, Bmacj6, which may have caused a shift of sex-pheromone preference in B. mori through Or gene choice and/or axon targeting.

0 Followers
 · 
198 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Silkmoth, Bombyx mori, is an ideal model insect for investigating the neural mechanisms underlying sex pheromone-induced innate behavior. Although transgenic techniques and the GAL4/UAS system are well established in the silkmoth, genetic tools useful for investigating brain function at the neural circuit level have been lacking.
    PLoS ONE 11/2014; 9(11):e113156. DOI:10.1371/journal.pone.0113156 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pheromone communication relies on highly specific signals sent and received between members of the same species. However, how pheromone preference is determined in moth olfactory circuits remains unknown. Here we describe a potential mechanism that generates preference differences in Ostrinia nubilalis. In Ostrinia nubilalis it was found that a single locus causes strain-specific, diametrically opposed preferences for a 2-component pheromone blend. Previously we found that pheromone preference was correlated with strain and hybrid-specific relative antennal response to both pheromone components. Here we detail the underlying mechanism of this differential response, through chemotopical mapping of the pheromone detection circuit in the antenna. We found that both strains and their hybrids have swapped the neuronal identity of the pheromone-sensitive neurons co-housed within a single sensillum. Furthermore, neurons that mediate behavioral antagonism surprisingly co-express up to five pheromone receptors, mirroring the concordantly broad tuning to heterospecific pheromones. Co-expression appears evolutionarily advantageous as it prevents cross attraction to a range of heterospecific signals, while keeping the pheromone detection system to its simplest tripartite setup
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Male moths locate their mates using species-specific sex pheromones emitted by conspecific females. One striking feature of sex pheromone recognition in males is the high degree of specificity and sensitivity at all levels, from the primary sensory processes to behavior. The silkmoth Bombyx mori is an excellent model insect in which to decipher the underlying mechanisms of sex pheromone recognition due to its simple sex pheromone communication system, where a single pheromone component, bombykol, elicits the full sexual behavior of male moths. Various technical advancements that cover all levels of analysis from molecular to behavioral also allow the systematic analysis of pheromone recognition mechanisms. Sex pheromone signals are detected by pheromone receptors expressed in olfactory receptor neurons in the pheromone-sensitive sensilla trichodea on male antennae. The signals are transmitted to the first olfactory processing center, the antennal lobe (AL), and then are processed further in the higher centers (mushroom body and lateral protocerebrum) to elicit orientation behavior toward females. In recent years, significant progress has been made elucidating the molecular mechanisms underlying the detection of sex pheromones. In addition, extensive studies of the AL and higher centers have provided insights into the neural basis of pheromone processing in the silkmoth brain. This review describes these latest advances, and discusses what these advances have revealed about the mechanisms underlying the specific and sensitive recognition of sex pheromones in the silkmoth.
    Frontiers in Physiology 03/2014; 5:125. DOI:10.3389/fphys.2014.00125