Article

Sex-linked transcription factor involved in a shift of sex-pheromone preference in the silkmoth Bombyx mori.

Laboratory of Insect Genetics and Bioscience, Department of Agricultural and Environmental Biology, University of Tokyo, Tokyo 113-8657, Japan.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2011; 108(44):18038-43. DOI: 10.1073/pnas.1107282108
Source: PubMed

ABSTRACT In the sex-pheromone communication systems of moths, odorant receptor (Or) specificity as well as higher olfactory information processing in males should be finely tuned to the pheromone of conspecific females. Accordingly, male sex-pheromone preference should have diversified along with the diversification of female sex pheromones; however, the genetic mechanisms that facilitated the diversification of male preference are not well understood. Here, we explored the mechanisms involved in a drastic shift in sex-pheromone preference in the silkmoth Bombyx mori using spli mutants in which the genomic structure of the gene Bmacj6, which encodes a class IV POU domain transcription factor, is disrupted or its expression is repressed. B. mori females secrete an ∼11:1 mixture of bombykol and bombykal. Bombykol alone elicits full male courtship behavior, whereas bombykal alone shows no apparent activity. In the spli mutants, the behavioral responsiveness of males to bombykol was markedly reduced, whereas bombykal alone evoked full courtship behavior. The reduced response of spli males to bombykol was explained by the paucity of bombykol receptors on the male antennae. It was also found that, in the spli males, neurons projecting into the toroid, a compartment in the brain where bombykol receptor neurons normally project, responded strongly to bombykal. The present study highlights a POU domain transcription factor, Bmacj6, which may have caused a shift of sex-pheromone preference in B. mori through Or gene choice and/or axon targeting.

0 Bookmarks
 · 
167 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sex pheromone communication, acting as a prezygotic barrier to mating, is believed to have contributed to the speciation of moths and butterflies in the order Lepidoptera. Five decades after the discovery of the first moth sex pheromone, little is known about the molecular mechanisms that underlie the evolution of pheromone communication between closely related species. Although Asian and European corn borers (ACB and ECB) can be interbred in the laboratory, they are behaviorally isolated from mating naturally by their responses to subtly different sex pheromone isomers, (E)-12- and (Z)-12-tetradecenyl acetate and (E)-11- and (Z)-11-tetradecenyl acetate (ACB: E12, Z12; ECB; E11, Z11). Male moth olfactory systems respond specifically to the pheromone blend produced by their conspecific females. In vitro, ECB(Z) odorant receptor 3 (OR3), a sex pheromone receptor expressed in male antennae, responds strongly to E11 but also generally to the Z11, E12, and Z12 pheromones. In contrast, we show that ACB OR3, a gene that has been subjected to positive selection (ω = 2.9), responds preferentially to the ACB E12 and Z12 pheromones. In Ostrinia species the amino acid residue corresponding to position 148 in transmembrane domain 3 of OR3 is alanine (A), except for ACB OR3 that has a threonine (T) in this position. Mutation of this residue from A to T alters the pheromone recognition pattern by selectively reducing the E11 response ∼14-fold. These results suggest that discrete mutations that narrow the specificity of more broadly responsive sex pheromone receptors may provide a mechanism that contributes to speciation.
    Proceedings of the National Academy of Sciences 08/2012; 109(35):14081-6. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Male moths can accurately perceive the sex pheromone emitted from conspecific females by their highly accurate and specific olfactory sensory system. Pheromone receptors are of special importance in moth pheromone reception because of their central role in chemosensory signal transduction processes that occur in olfactory receptor neurons in the male antennae. There are a number of pheromone receptor genes have been cloned, however, only a few have been functionally characterized. Here we cloned six full-length pheromone receptor genes from Helicoverpa armigera male antennae. Real-time PCR showing all genes exhibited male-biased expression in adult antennae. Functional analyses of the six pheromone receptor genes were then conducted in the heterologous expression system of Xenopus oocytes. HarmOR13 was found to be a specific receptor for the major sex pheromone component Z11-16:Ald. HarmOR6 was equally tuned to both of Z9-16: Ald and Z9-14: Ald. HarmOR16 was sensitively tuned to Z11-16: OH. HarmOR11, HarmOR14 and HarmOR15 failed to respond to the tested candidate pheromone compounds. Our experiments elucidated the functions of some pheromone receptor genes of H. armigera. These advances may provide remarkable evidence for intraspecific mating choice and speciation extension in moths at molecular level.
    PLoS ONE 01/2013; 8(4):e62094. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Male moths locate their mates using species-specific sex pheromones emitted by conspecific females. One striking feature of sex pheromone recognition in males is the high degree of specificity and sensitivity at all levels, from the primary sensory processes to behavior. The silkmoth Bombyx mori is an excellent model insect in which to decipher the underlying mechanisms of sex pheromone recognition due to its simple sex pheromone communication system, where a single pheromone component, bombykol, elicits the full sexual behavior of male moths. Various technical advancements that cover all levels of analysis from molecular to behavioral also allow the systematic analysis of pheromone recognition mechanisms. Sex pheromone signals are detected by pheromone receptors expressed in olfactory receptor neurons in the pheromone-sensitive sensilla trichodea on male antennae. The signals are transmitted to the first olfactory processing center, the antennal lobe (AL), and then are processed further in the higher centers (mushroom body and lateral protocerebrum) to elicit orientation behavior toward females. In recent years, significant progress has been made elucidating the molecular mechanisms underlying the detection of sex pheromones. In addition, extensive studies of the AL and higher centers have provided insights into the neural basis of pheromone processing in the silkmoth brain. This review describes these latest advances, and discusses what these advances have revealed about the mechanisms underlying the specific and sensitive recognition of sex pheromones in the silkmoth.
    Frontiers in Physiology 01/2014; 5:125.

Full-text

View
74 Downloads
Available from
Jun 1, 2014