Apoptosis induced by SRC-family tyrosine kinase inhibitors in cultured rat cortical cells.

Center of Development for Education, Hokuriku University, Kanazawa, Japan.
Neurotoxicity Research (Impact Factor: 3.15). 04/2012; 21(3):309-16. DOI: 10.1007/s12640-011-9284-5
Source: PubMed

ABSTRACT In the central nervous system, members of the Src family of tyrosine kinases (SFKs) are widely expressed and are abundant in neurons. The purpose of this study is to examine whether glycogen synthase-3 (GSK-3) is involved in SFK inhibitor-induced apoptosis. PP2 and SU6656, SFK inhibitors, increased apoptotic cell death with morphological changes that were characterized by cell shrinkage, chromatin condensation, or nuclear fragmentation. Moreover, both activation of caspase-9 and caspase-3 were accompanied by the cell death. GSK-3 inhibitors, such as alsterpaullone and SB216763, prevented the PP2-induced apoptosis. In addition, insulin-like growth factor-I prevented the PP2-induced cell death and PP2 inhibited phosphorylation of focal adhesion kinase (FAK). Phosphorylation of FAK on Tyr 576 by Src activates FAK. These results suggest that inhibition of SFK induces apoptosis possibly via blocking of FAK/phosphatidylinositol-3 kinase/Akt signaling pathway and activation of GSK-3 is involved in the cell death in rat cortical neurons.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia induces a cerebral inflammatory response, which contributes to brain injury. Inflammasomes are complex intracellular molecular structures that initiate the inflammatory cascade. Caspase-1 and interleukin 1-β (IL-1β), have been established as markers of inflammasome activation. Src kinase, a cytosolic non-receptor protein tyrosine kinase, is linked to cell proliferation and differentiation and is up regulated during hypoxia. The role of Src kinase in the above pathway is not fully understood. The present study tests the hypothesis that inhibition of Src kinase, by a selective inhibitor, PP2, will prevent the activation of caspase-1 and production of IL-1β acutely, as well as at 1 and 15 days after hypoxia in the cerebral cortex of the newborn piglet. Piglets were divided into: Normoxia (Nx), Hypoxia acute (Hx), Hypoxia-day 1 (Hx-day 1), and Hypoxia day 15 (Hx-day 15). Piglets pretreated with Src kinase inhibitor, PP2, 1 mg/kg IV, 30 min prior to hypoxia were divided into: Hypoxia acute (Hx + PP2), 1 day (Hx + PP2-day 1), and day 15 (Hx + PP2-day 15). Hypoxia was induced by exposing the piglets to an FiO2 of 0.07 for 1 hour. Caspase-1 activity and expression were determined with spectrophotometry and Western blot respectively, while IL-1β levels were measured by solid phase ELISA. Caspase-1 activation was achieved immediately (within 1 h) after hypoxia and persisted for 15 days. IL-1β level was also increased after hypoxia reaching a maximum level at 24 h following hypoxia and returned to baseline by 15 days. Administration of PP2 attenuated the activity acutely, but not the expression of the caspase-1. IL-1β level at 24 h after hypoxia returned to baseline in piglets that were pretreated with PP2. We provide evidence that inhibition of Src kinase in the acute phase after hypoxia involves changes in the production or processing of caspase-1 subunits. Our data suggest that Src kinase mediates hypoxia-induced caspase-1 activation in the cerebral cortex of newborn piglets. Inhibition of Src kinase may attenuate the neuroinflammatory response and could represent a potential target for neuroprotection after hypoxic injury.
    Neurochemical Research 08/2014; 39(11). DOI:10.1007/s11064-014-1404-1 · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although it was originally characterized as a constituent of focal adhesions in fibroblasts, focal adhesion kinase (FAK) is now considered to be not only a mediator of adhesion processes but also a crucial regulator of guidance and a modulator of gene expression. FAK is the main transducer of the integrin signaling required to stabilize the actin cytoskeleton. However, additional activities have been described over the years. In the brain, FAK deserves particular attention as it is found in various alternatively spliced forms – these distributed in multiple subcellular compartments or bound to multiple partners. Moreover, its signaling involves not only phosphorylation but also ubiquitination and proteolysis. Several experimental cell models demonstrate that FAK increases or decreases migration, participates in differentiation and contributes to plasticity events. In addition, this kinase is linked to cell survival in cancer and apoptosis. This review focuses on the diversity of events involving brain-located forms of FAK.
    European Journal of Neuroscience 09/2014; 40(11). DOI:10.1111/ejn.12737 · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Src-family kinases (SEKs) are involved in neuronal survival and their aberrant regulation contributes to neuronal death. However, how they control neuronal survival and death remains unclear. Objective: To define the effect of inhibition of Src activity and expression on neuronal survival. Results: In agreement with our previous findings, we demonstrated that Src was cleaved by calpain to form a 52-kDa truncated fragment in neurons undergoing excitotoxic cell death, and expression of the recombinant truncated Src fragment induced neuronal death. The data confirm that the neurotoxic signaling pathways are intact in the neurons we used for our study. To define the functional role of neuronal SFKs, we treated these neurons with SFK inhibitors and discovered that the treatment induced cell death, suggesting that the catalytic activity of one or more of the neuronal SEKs is critical to neuronal survival. Using small hairpin RNAs that suppress Src expression, we demonstrated that Src is indispensable to neuronal survival. Additionally, we found that neuronal death induced by expression of the neurotoxic truncated Src mutant, treatment of SFK inhibitors or knockdown of Src expression caused inhibition of the neuroprotective protein kinases Erk1/2, or Akt. Conclusions: Src is critical to both neuronal survival and death. Intact Src sustains neuronal survival. However, in the excitotoxic condition, calpain cleavage of Src generates a neurotoxic truncated Src fragment. Both intact Src and the neurotoxic truncated Src fragment exert their biological actions by controlling the activities of neuroprotective protein kinases.
    Brain Research 10/2014; 1594. DOI:10.1016/j.brainres.2014.10.040 · 2.83 Impact Factor

Yoshiki Koriyama