Shorter telomeres are associated with obesity and weight gain in the elderly.

Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
International journal of obesity (2005) (Impact Factor: 5.39). 10/2011; 36(9):1176-9. DOI: 10.1038/ijo.2011.196
Source: PubMed

ABSTRACT Objective:Obesity and shorter telomeres are commonly associated with elevated risk for age-related diseases and mortality. Whether telomere length (TL) may be associated with obesity or variations in adiposity is not well established. Therefore, we set out to test the hypothesis that TL may be a risk factor for increased adiposity using data from a large population-based cohort study.Design:Levels of adiposity were assessed in six ways (obesity status, body mass index (BMI), the percentage of body fat or % body fat, leptin, visceral and subcutaneous fat mass) in 2721 elderly subjects (42% black and 58% white). Associations between TL measured in leukocytes at baseline and adiposity traits measured at baseline, and three of these traits after 7 years of follow-up were tested using regression models adjusting for important covariates. Additionally, we look at weight changes and relative changes in BMI and % body fat between baseline and follow-up.Results:At baseline, TL was negatively associated with % body fat (ß=-0.35±0.09, P=0.001) and subcutaneous fat (ß=-2.66±1.07, P=0.01), and positively associated with leptin after adjusting for % body fat (ß=0.32±0.14, P=0.001), but not with obesity, BMI or visceral fat. Prospective analyses showed that longer TL was associated with positive percent change between baseline and 7-year follow-up for both BMI (ß=0.48±0.20, P=0.01) and % body fat (ß=0.42±0.23, P=0.05).Conclusion:Our study suggests that shorter TL may be a risk factor for increased adiposity. Coupling with previous reports on their reversed roles, the relationship between adiposity and TL may be complicated and may warrant more prospective studies.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adipocyte hypertrophy and hyperplasia have been shown to be associated with shorter telomere length, which may reflect aging, altered cell proliferation and adipose tissue (AT) dysfunction. In individuals with obesity, differences in fat distribution and AT cellular composition may contribute to obesity related metabolic diseases. Here, we tested the hypotheses that telomere lengths (TL) are different between: (1) abdominal subcutaneous and omental fat depots, (2) superficial and deep abdominal subcutaneous AT (SAT), and (3) adipocytes and cells of the stromal vascular fraction (SVF). We further asked whether AT TL is related to age, anthropometric and metabolic traits. TL was analyzed by quantitative PCR in total human genomic DNA isolated from paired subcutaneous and visceral AT of 47 lean and 50 obese individuals. In subgroups, we analyzed TL in isolated small and large adipocytes and SVF cells. We find significantly shorter TL in subcutaneous compared to visceral AT (p<0.001) which is consistent in men and subgroups of lean and obese, and individuals with or without type 2 diabetes (T2D). Shorter TL in SAT is entirely due to shorter TL in the SVF compared to visceral AT (p<0.01). SAT TL is most strongly correlated with age (r=-0.205, p<0.05) and independently of age with HbA1c (r=-0.5, p<0.05). We found significant TL differences between superficial SAT of lean and obese as well as between individuals with our without T2D, but not between the two layers of SAT. Our data indicate that fat depot differences in TL mainly reflect shorter TL of SVF cells. In addition, we found an age and BMI-independent relationship between shorter TL and HbA1c suggesting that chronic hyperglycemia may impair the regenerative capacity of AT more strongly than obesity alone. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 01/2015; 457(3). DOI:10.1016/j.bbrc.2014.12.122 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Centenarians and their offspring are increasingly considered a useful model to study and characterize the mechanisms underlying healthy aging and longevity. The aim of this project is to compare the prevalence of age-related diseases and telomere length (TL), a marker of biological age and mortality, across five groups of subjects: semisupercentenarians (SSCENT) (105-109years old), centenarians (CENT) (100-104years old), centenarians' offspring (CO), age- and gender-matched offspring of parents who both died at an age in line with life expectancy (CT) and age- and gender-matched offspring of both non-long-lived parents (NLO). Information was collected on lifestyle, past and current diseases, medical history and medication use. SSCENT displayed a lower prevalence of acute myocardial infarction (p=0.027), angina (p=0.016) and depression (p=0.021) relative to CENT. CO appeared to be healthier compared to CT who, in turn, displayed a lower prevalence of both arrhythmia (p=0.034) and hypertension (p=0.046) than NLO, characterized by the lowest parental longevity. Interestingly, CO and SSCENT exhibited the longest (p<0.001) and the shortest (p<0.001) telomeres respectively while CENT showed no difference in TL compared to the younger CT and NLO. Our results strengthen the hypothesis that the longevity of parents may influence the health status of their offspring. Moreover, our data also suggest that both CENT and their offspring may be characterized by a better TL maintenance which, in turn, may contribute to their longevity and healthy aging. The observation that SSCENT showed considerable shorter telomeres compared to CENT may suggest a progressive impairment of TL maintenance mechanisms over the transition from centenarian to semisupercentenarian age.
    Experimental Gerontology 06/2014; DOI:10.1016/j.exger.2014.06.018 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: Although telomere shortening has been linked with type 2 diabetes and most variables of adiposity, a shortcoming of such studies is the measurement of telomere length in leukocytes. Therefore, we tested the association among adipocyte cell size, telomere length (both subcutaneous and visceral adipose tissue) and systemic levels of adiponectin in obese subjects and patients with type 2 diabetes compared to control subjects. METHODS: Human subcutaneous and visceral adipose tissues were obtained from the subjects who have undergone bariatric surgery or other abdominal surgeries. The study groups comprised: i) control subjects, ii) type 2 diabetes patients, iii) obese subjects without diabetes and iv) obese subjects with diabetes. Adipocyte cell size was measured by histological staining. Adiponectin levels were measured by ELISA. Telomere length was determined by Real-time PCR and lipid peroxidation was assessed by fluorimetry. RESULTS: Compared to control subjects, adipocyte size (both subcutaneous and visceral) from obese, diabetic and obese-diabetic subjects was significantly larger [p<0.001]. Individuals with adipose hypertrophy also exhibited shortened telomeres and hypoadiponectinemia. Pearson correlation analysis revealed that both visceral and subcutaneous fat cell size showed a positive correlation with FBS, HbA1c, HOMA-IR, LDL, total cholesterol, triglycerides and negatively correlated with HDL and adiponectin. Regression analysis revealed that the association between shortened telomeres and hypoadiponectinemia was lost when adjusted for adipocyte cell size. CONCLUSION: Adipocyte hypertrophy appears to be strongly associated with shortened telomeres, hypoadiponectinemia and poor glycemic and lipid control. Interestingly, these molecular alterations seen in lean diabetics reflect a state of 'metabolic obesity'.
    Clinical biochemistry 07/2012; 45(16-17). DOI:10.1016/j.clinbiochem.2012.07.097 · 2.23 Impact Factor