Involvement of CLEC16A in activation of astrocytes after LPS treated

Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu, People's Republic of China.
Neurochemical Research (Impact Factor: 2.59). 01/2012; 37(1):5-14. DOI: 10.1007/s11064-011-0581-4
Source: PubMed


CLEC16A, C-type lectin domain family 16, member A was recently found to be associated with inflation process in the autoimmune diseases. In this study, we elucidated the dynamic expression changes and localization of CLEC16A in lipopolysaccharide (LPS)-induced neuroinflammatory processes in adult rats. CLEC16A expression was strongly induced in active astrocytes in inflamed cerebral cortex. In vitro studies indicated that the up-regulation of CLEC16A may be involved in the subsequent astrocyte activation following LPS challenge. And Knock-down of CLEC16A in cultured primary astrocytes by siRNA showed that CLEC16A was required for the activation of astrocytes induced by LPS. Collectively, these results suggested CLEC16A may be important in host defense in astrocyte-mediated immune response. Understanding the cell signal pathway may provide a novel strategy against inflammatory and immune reaction in neuroinflammtion in CNS.

9 Reads
  • Source
    • "Moreover, any possible involvement of CLECs in the reaction to traumatic CNS injuries is entirely unknown. There exist a few examples where CLECs have been implicated in CNS pathology, for example, Clec16a has been genetically associated with susceptibility to multiple sclerosis (MS) [48] and is upregulated in astrocytes after infectious stimuli [49], and Clec5a was recently demonstrated to have a disease regulatory effect in a mouse viral encephalitis model [50]. Since microglia display certain similarities to DCs and arguably constitute the main resident APCS in the CNS [2], it is not surprising that we found a much higher expression of C-type lectins on microglia compared to astrocytes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background C-type lectin (CLEC) receptors are important for initiating and shaping immune responses; however, their role in inflammatory reactions in the central nervous system after traumatic injuries is not known. The antigen-presenting lectin-like receptor gene complex (Aplec) contains a few CLEC genes, which differ genetically among inbred rat strains. It was originally thought to be a region that regulates susceptibility to autoimmune arthritis, autoimmune neuroinflammation and infection. Methods The inbred rat strains DA and PVG differ substantially in degree of spinal cord motor neuron death following ventral root avulsion (VRA), which is a reproducible model of localized nerve root injury. A large F2 (DAxPVG) intercross was bred and genotyped after which global expressional profiling was performed on spinal cords from F2 rats subjected to VRA. A congenic strain, Aplec, created by transferring a small PVG segment containing only seven genes, all C-type lectins, ontoDA background, was used for further experiments together with the parental strains. Results Global expressional profiling of F2 (DAxPVG) spinal cords after VRA and genome-wide eQTL mapping identified a strong cis-regulated difference in the expression of Clec4a3 (Dcir3), a C-type lectin gene that is a part of the Aplec cluster. Second, we demonstrate significantly improved motor neuron survival and also increased T-cell infiltration into the spinal cord of congenic rats carrying Aplec from PVG on DA background compared to the parental DA strain. In vitro studies demonstrate that the Aplec genes are expressed on microglia and upregulated upon inflammatory stimuli. However, there were no differences in expression of general microglial activation markers between Aplec and parental DA rats, suggesting that the Aplec genes are involved in the signaling events rather than the primary activation of microglia occurring upon nerve root injury. Conclusions In summary, we demonstrate that a genetic variation in Aplec occurring among inbred strains regulates both survival of axotomized motor neurons and the degree of lymphocyte infiltration. These results demonstrate a hitherto unknown role for CLECs for intercellular communication that occurs after damage to the nervous system, which is relevant for neuronal survival.
    Journal of Neuroinflammation 05/2013; 10(1):60. DOI:10.1186/1742-2094-10-60 · 5.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CBLL1 (Casitas B-lineage lymphoma-transforming sequence-like protein 1) also known as Hakai, was originally identified as an E3 ubiquitin-ligase for the E-cadherin complex. Recent data have provided evidences for novel biological functional role of CBLL1 during tumor progression and other diseases. However, its distribution and function in the central nervous system (CNS) remains unclear. In this study, we found CBLL1 was significant up-regulation in cerebral cortex after LPS administration and immunofluorescent labeling indicated that CBLL1 was localized striking in the neurons. We also investigated co-staining of CBLL1 and active-caspase-3 and cyclin D1 in the cerebral cortex following LPS administration. Based on our data, we speculated that CBLL1 might play an important role in neuronal apoptosis following LPS administration and might provide a basis for the further study on its role in cell cycle re-entry in neuroinflammation in CNS.
    Journal of molecular histology 11/2012; 44(2). DOI:10.1007/s10735-012-9467-2 · 1.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ras homolog enriched in the brain (Rheb) is a homolog of Ras GTPase that regulates cell growth, proliferation, and cell cycle via mammalian target of rapamycin (mTOR). Recently, it has been confirmed that Rheb activation not only promotes cellular proliferation and differentiation but also enhances cellular apoptosis in response to diverse toxic stimuli. However, the function of Rheb in the central nervous system (CNS) is still with limited understanding. To elaborate whether Rheb was involved in CNS injury, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventral injection in adult rats. Upregulation of Rheb was observed in the brain cortex by performing western blotting and immunohistochemistry. Double immunofluorescent staining demonstrated that Rheb was mainly in active astrocytes and neurons. PCNA and active caspase-3 were upregulated, and co-labeling with Rheb, which indicated that Rheb might be relevant to astrocytic proliferation and neuronal apoptosis following the inflammatory response by LPS-induced. Furthermore, we also found that the expression profiles of cyclinD1 and CDK4 were parallel with that of Rheb in a time-space dependent manner. Finally, knocking down Rheb by siRNA and treatment with rapamycin or lovastatin showed that not only astrocytic proliferation decreased but also neuronal protection. Based on our data, we suggested that Rheb might play an important role in physiological and pathological functions following neuroinflammation caused by LPS, which might provide a potential target to the treatment of neuroinflammation.
    Neurochemistry International 02/2013; 62(4). DOI:10.1016/j.neuint.2013.01.025 · 3.09 Impact Factor
Show more