Article

p53 Family: Role of Protein Isoforms in Human Cancer

Department of Surgery and Cancer Biology, Vanderbilt University Medical Center, 1255 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA.
Journal of nucleic acids 01/2012; 2012(2090-0201):687359. DOI: 10.1155/2012/687359
Source: PubMed

ABSTRACT TP53, TP63, and TP73 genes comprise the p53 family. Each gene produces protein isoforms through multiple mechanisms including extensive alternative mRNA splicing. Accumulating evidence shows that these isoforms play a critical role in the regulation of many biological processes in normal cells. Their abnormal expression contributes to tumorigenesis and has a profound effect on tumor response to curative therapy. This paper is an overview of isoform diversity in the p53 family and its role in cancer.

Full-text

Available from: Jinxiong Wei, Jun 30, 2014
0 Followers
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Restin belongs to MAGE superfamily and is known as MAGE H1. Restin was firstly cloned from HL-60 cells treated with all-trans retinoic acid (ATRA). Previous studies showed a pro-apoptotic role of Restin in several cell lines. However, little information is available on its expression patterns and functions in vivo. Our study was performed to detect if Restin plays a role in breast cancer cells in vitro and in vivo. Methods and results Real-time PCR and western blot were conducted to detect Restin expression in multiple breast cancer cell lines and Restin level was negatively related with cell motility. Restin overexpression and knockdown stable cell lines were established by transducing lentivirus into MCF-7 and MDA-MB-231 cells. Cell morphology, wound closure assay, transwell migration and invasion assays were performed to detect if Restin inhibited EMT. Our data showed that Restin overexpressed cells exhibited classical epithelial cell morphology, and Restin overexpression resulted in activation of epithelial markers and suppression of mesenchymal markers, and inhibition of cell migration and invasion. Tumor xenograft model was used to characterize the biological functions of Restin in vivo. We found that Restin overexpression led to reduced lung metastasis. Real-time PCR, western blot, luciferase assay and ChIP assay were performed to identify the potential targets of Restin and the underlying molecular mechanisms. Among several master regulators of EMT, only ZEB1/2 levels were dramatically inhibited by Restin. Unexpectedly, Restin indirectly regulated ZEB1/2 expression at post-transcriptional level. We further identified mir-200a/b, well-characterized mediators controlling ZEB1/2 expression, were transcriptionally activated by Restin and the regulation was dependent on the p53 binding site in mir-200b/a/429 promoter. Further mechanical studies demonstrated Restin interacted with p73, one of p53 family members, which contributed to Restin-mediated activation of mir-200a/b and suppression of ZEB1/2. Conclusions Taken together, our results suggest that Restin inhibits EMT and tumor metastasis by controlling the expression of the tumor metastasis suppressor mir-200a/b via association with p73. Our findings not only establish a mechanistic link between Restin, EMT and tumor metastasis, but also provide strong evidence supporting the notion that MAGE Group II proteins may exert a tumor suppressive effect in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0370-9) contains supplementary material, which is available to authorized users.
    Molecular Cancer 05/2015; 14(1). DOI:10.1186/s12943-015-0370-9 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The p53-related gene p63 is required for epithelial cell establishment and its expression is often altered in tumor cells. Great strides have been made in understanding the pathways and mechanisms that regulate p63 levels, such as the Wnt, Hedgehog, Notch, and EGFR pathways. We discuss here the multiple signaling pathways that control p63 expression as well as transcription factors and post-transcriptional mechanisms that regulate p63 levels. While a unified picture has not emerged, it is clear that the fine-tuning of p63 has evolved to carefully control epithelial cell differentiation and fate.
    Frontiers in Endocrinology 04/2015; 6. DOI:10.3389/fendo.2015.00051
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing (AS) is a key regulatory mechanism in protein synthesis and proteome diversity. In this study, we identified alternative splicing events in four pairs of cervical squamous cell carcinoma (CSCC) and adjacent nontumor tissues using RNA sequencing. The transcripts of the four paired samples were thoroughly analyzed by RNA sequencing. SpliceMap software was used to detect the splicing junctions. Kyoto Encyclopedia of Genes and Genomes pathway analysis was conducted to detect the alternative spliced genes-related signal pathways. The alternative spliced genes were validated by reverse transcription-polymerase chain reaction (RT-PCR). There were 35 common alternative spliced genes in the four CSCC samples; they were novel and CSCC specific. Sixteen pathways were significantly enriched (P<0.05). One novel 5'AS site in the KLHDC7B gene, encoding kelch domain-containing 7B, and an exon-skipping site in the SYCP2 gene, encoding synaptonemal complex 2, were validated by RT-PCR. The KLHDC7B gene with 5'AS was found in 67.5% (27/40) of CSCC samples and was significantly related with cellular differentiation and tumor size. The exon-skipping site of the SYCP2 gene was found in 35.0% (14/40) of CSCC samples and was significantly related with depth of cervical invasion. The KLHDC7B and the SYCP2 genes with alternative spliced events might be involved in the development and progression of CSCC and could be used as biomarkers in the diagnosis and prognosis of CSCC.
    OncoTargets and Therapy 01/2015; 8:73-9. DOI:10.2147/OTT.S72832 · 1.34 Impact Factor