β-Cell Generation: Can Rodent Studies Be Translated to Humans?

Department of Nephrology, Leiden University Medical Center, Postal Zone C3-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
Journal of Transplantation 10/2011; 2011:892453. DOI: 10.1155/2011/892453
Source: PubMed

ABSTRACT β-cell replacement by allogeneic islet transplantation is a promising approach for patients with type 1 diabetes, but the shortage of organ donors requires new sources of β cells. Islet regeneration in vivo and generation of β-cells ex vivo followed by transplantation represent attractive therapeutic alternatives to restore the β-cell mass. In this paper, we discuss different postnatal cell types that have been envisaged as potential sources for future β-cell replacement therapy. The ultimate goal being translation to the clinic, a particular attention is given to the discrepancies between findings from studies performed in rodents (both ex vivo on primary cells and in vivo on animal models), when compared with clinical data and studies performed on human cells.

Download full-text


Available from: Johanne Ellenbroek, Aug 23, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Revascularization of grafts is one of the important key factors for the success of islet transplantation. After partial hepatectomy, many growth factors such as hepatocyte growth factor and vascular endothelial growth factor are increased in the remnant liver. These growth factors have properties that promote angiogenesis. This might be an optimal environment for revascularization of islets transplanted intraportally. To verify this hypothesis, syngeneic islets (330 per recipient) were transplanted into the right hepatic lobes of streptozotocin-induced diabetic Balb/c mice with (hepatectomy group) or without (control group) left liver resection. Blood glucose was monitored for 28 d after transplantation. Glucose tolerance test was performed on post-operative day (POD) 30, and histological assessments were performed on POD 7 and 30 respectively. Analysis revealed that 36.7% of the control and 90.0% of the hepatectomy mice attained normoglycemia during the observation period (*p = 0.0142). Glucose tolerance was improved in the hepatectomy group (Area under the curve of intraperitoneal glucose tolerance tests on POD 30, Control; 47,700 ± 5,890 min*mg/dl, Hepatectomy; 26,000 ± 2,060 min*mg/dl: **p = 0.00314). Revascularization of grafted islets was more pronounced in the hepatectomy group (Vessel number per islet area on POD 7, Control; 3.20 ± 0.463 × 10 (-4) /µm ( 2) , Hepatectomy; 7.08 ± 0.513 × 10 (-4) /µm ( 2) : **p < 0.01). In the present study, partial hepatectomy (30%) improved the outcome of intraportal islet transplantation. Revascularization of islets transplanted into the liver may have been promoted by the induction of liver regeneration.
    Islets 03/2012; 4(2):138-44. DOI:10.4161/isl.19491 · 1.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overnutrition during pregnancy and lactation lend increasing support to the development of obesity and several chronic diseases in adulthood such as type 2 diabetes mellitus, which leads to beta-cell dysfunction and insulin resistance. In this work, we aimed to study the effects of early life overnutrition on the development of obesity, analyzing the morphological changes, expression of TNF-α, and also the stem cell marker CD133 in the pancreatic islets of young and adult mice. Overnutrition during lactation phase was used as an experimental model to induce obesity. The animals were analyzed at 28 and 150 days of age, when pancreata were collected for histological, ultrastructural and western blotting analysis. The results showed that islet hypertrophy is established in obese groups at day 28 and remained until adulthood. CD133+ cells were observed as small cells within pancreatic islets in both control and obese young mice. However, at day 150, these cells were observed only in the islet peripheries and near ducts of the obese group. Furthermore, TNF-α expression in pancreatic islets was increased in both young and adult obese groups when compared to control groups. This work shows interesting data about CD133 receptor and TNF-α roles in the pancreas during obesity development.
    Tissue and Cell 04/2012; 44(4):238-48. DOI:10.1016/j.tice.2012.04.001 · 1.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the last decade, our knowledge of β-cell biology has expanded with the use of new scientific techniques and strategies. Growth factors, hormones and small molecules have been shown to enhance β-cell proliferation and function. Stem cell technology and research into the developmental biology of the pancreas have yielded new methods for in vivo and in vitro regeneration of β cells from stem cells and endogenous progenitors as well as transdifferentiation of non-β cells. Novel pharmacological approaches have been developed to preserve and enhance β-cell function. Strategies to increase expression of insulin gene transcription factors in dysfunctional and immature β cells have ameliorated these impairments. Hence, we suggest that strategies to minimize β-cell loss and to increase their function and regeneration will ultimately lead to therapy for both Type 1 and 2 diabetes.
    05/2012; 2(3):213-222. DOI:10.2217/dmt.12.21
Show more