Article

Inhibition of endoplasmic reticulum-associated degradation rescues native folding in loss of function protein misfolding diseases.

Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 12/2011; 286(50):43454-64. DOI: 10.1074/jbc.M111.274332
Source: PubMed

ABSTRACT Lysosomal storage disorders are often caused by mutations that destabilize native folding and impair trafficking of secretory proteins. We demonstrate that endoplasmic reticulum (ER)-associated degradation (ERAD) prevents native folding of mutated lysosomal enzymes in patient-derived fibroblasts from two clinically distinct lysosomal storage disorders, namely Gaucher and Tay-Sachs disease. Prolonging ER retention via ERAD inhibition enhanced folding, trafficking, and activity of these unstable enzyme variants. Furthermore, combining ERAD inhibition with enhancement of the cellular folding capacity via proteostasis modulation resulted in synergistic rescue of mutated enzymes. ERAD inhibition was achieved by cell treatment with small molecules that interfere with recognition (kifunensine) or retrotranslocation (eeyarestatin I) of misfolded substrates. These different mechanisms of ERAD inhibition were shown to enhance ER retention of mutated proteins but were associated with dramatically different levels of ER stress, unfolded protein response activation, and unfolded protein response-induced apoptosis.

0 Followers
 · 
135 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gaucher disease is a prevalent lysosomal storage disease characterized by a deficiency in the activity of lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45). One of the most prevalent disease-causing mutations in humans is a L444P missense mutation in the GCase protein, which results in its disrupted folding in the endoplasmic reticulum (ER) and impaired post-ER trafficking. To determine whether the post-ER trafficking of this severely malfolded protein can be restored, we expressed the mutant L444P GCase as a recombinant protein in transgenic tobacco (Nicotiana tabacum L. cv Bright Yellow 2 [BY2]) cells, in which the GCase variant was equipped with a plant signal peptide to allow for secretion upon rescued trafficking out of the ER. The recombinant L444P mutant GCase was retained in the plant endoplasmic reticulum (ER). Kifunensine and Eeyarestatin I, both inhibitors of ER-associated degradation (ERAD), and the proteostasis regulators, celastrol and MG-132, increased the steady-state levels of the mutant protein inside the plant cells and further promoted the post-ER trafficking of L444P GCase, as indicated by endoglycosidase-H sensitivity- and secretion- analyses. Transcript profiling of genes encoding ER-molecular chaperones, ER stress responsive proteins, and cytoplasmic heat shock response proteins, revealed insignificant or only very modest changes in response to the ERAD inhibitors and proteostasis regulators. An exception was the marked response to celastrol which reduced the steady-state levels of cytoplasmic HSP90 transcripts and protein. As Hsp90 participates in the targeting of misfolded proteins to the proteasome pathway, its down-modulation in response to celastrol may partly account for the mechanism of improved homeostasis of L444P GCase mediated by this triterpene.
    Plant signaling & behavior 04/2014; 9(3). DOI:10.4161/psb.28714
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG) activity in cultured cells is highly desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with Mucopolysaccharidosis type IIIB (MPS IIIB) due to mutations in NAGLU, the gene that encodes NAG. Currently available techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4-Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG), in a one-step cell assay that does not require cell disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB), a master regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of candidate molecules and constructs for applications in enzyme replacement therapy, gene therapy, and combination therapies.
    PLoS ONE 06/2013; 8(6):e68060. DOI:10.1371/journal.pone.0068060 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several regulators of endoplasmic reticulum (ER)-associated degradation (ERAD) have a shorter half-life compared to conventional ER chaperones. At steady state, they are selectively removed from the ER by poorly defined events collectively referred to as ERAD tuning. Here we identify the complex comprising the type-I transmembrane protein SEL1L and the cytosolic protein LC3-I as an ERAD tuning receptor regulating the COPII-independent, vesicle-mediated removal of the lumenal ERAD regulators EDEM1 and OS-9 from the ER. Expression of folding-defective polypeptides enhances the lumenal content of EDEM1 and OS-9 by inhibiting their SEL1L:LC3-I-mediated segregation. This raises ERAD activity in the absence of UPR-induction. The mouse hepatitis virus (MHV) subverts ERAD tuning for replication. Consistently, SEL1L or LC3 silencing impair the MHV life cycle. Collectively, our data provide new molecular information about the ERAD tuning mechanisms that regulate ERAD in mammalian cells at the post translational level and how these mechanisms are hijacked by a pathogen.
    Molecular cell 05/2012; 46(6):809-19. DOI:10.1016/j.molcel.2012.04.017 · 14.46 Impact Factor