Inhibition of Endoplasmic Reticulum-associated Degradation Rescues Native Folding in Loss of Function Protein Misfolding Diseases

Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 12/2011; 286(50):43454-64. DOI: 10.1074/jbc.M111.274332
Source: PubMed


Lysosomal storage disorders are often caused by mutations that destabilize native folding and impair trafficking of secretory proteins. We demonstrate that endoplasmic reticulum (ER)-associated degradation (ERAD) prevents native folding of mutated lysosomal enzymes in patient-derived fibroblasts from two clinically distinct lysosomal storage disorders, namely Gaucher and Tay-Sachs disease. Prolonging ER retention via ERAD inhibition enhanced folding, trafficking, and activity of these unstable enzyme variants. Furthermore, combining ERAD inhibition with enhancement of the cellular folding capacity via proteostasis modulation resulted in synergistic rescue of mutated enzymes. ERAD inhibition was achieved by cell treatment with small molecules that interfere with recognition (kifunensine) or retrotranslocation (eeyarestatin I) of misfolded substrates. These different mechanisms of ERAD inhibition were shown to enhance ER retention of mutated proteins but were associated with dramatically different levels of ER stress, unfolded protein response activation, and unfolded protein response-induced apoptosis.

24 Reads
  • Source
    • "Next, we investigated whether simultaneous inhibition of p97 and of the proteasome increases MMC death compared to separate inhibition. We treated the panel of MMC lines with concentrations of bortezomib (5nM) and Eer1 (5µM) that have been shown to be pharmacologically effective in cancer cells, including malignant B cells, and fibroblasts [11,29,36-38]. . In addition, we found that a 2-hour treatment with 5nM of bortezomib blocked chymotrypsin-like proteasome activity by approximately 80% in OPM-2 cells, and that an 8-hour treatment of KMS-11 cells with Eer1, but not with bortezomib, significantly up-regulated HMOX1 levels, as demonstrated previously (data not shown) [11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of the proteasome is a widely used strategy for treating multiple myeloma that takes advantage of the heavy secretory load that multiple myeloma cells (MMCs) have to deal with. Resistance of MMCs to proteasome inhibition has been linked to incomplete disruption of proteasomal endoplasmic-reticulum (ER)-associated degradation (ERAD) and activation of non-proteasomal protein degradation pathways. The ATPase p97 (VCP/Cdc48) has key roles in mediating both ERAD and non-proteasomal protein degradation and can be targeted pharmacologically by small molecule inhibition. In this study, we compared the effects of p97 inhibition with Eeyarestatin 1 and DBeQ on the secretory apparatus of MMCs with the effects induced by the proteasome inhibitor bortezomib, and the effects caused by combined inhibition of p97 and the proteasome. We found that p97 inhibition elicits cellular responses that are different from those induced by proteasome inhibition, and that the responses differ considerably between MMC lines. Moreover, we found that dual inhibition of both p97 and the proteasome terminally disrupts ER configuration and intracellular protein metabolism in MMCs. Dual inhibition of p97 and the proteasome induced high levels of apoptosis in all of the MMC lines that we analysed, including bortezomib-adapted AMO-1 cells, and was also effective in killing primary MMCs. Only minor toxicity was observed in untransformed and non-secretory cells. Our observations highlight non-redundant roles of p97 and the proteasome in maintaining secretory homeostasis in MMCs and provide a preclinical conceptual framework for dual targeting of p97 and the proteasome as a potential new therapeutic strategy in multiple myeloma.
    PLoS ONE 09/2013; 8(9):e74415. DOI:10.1371/journal.pone.0074415 · 3.23 Impact Factor
  • Source
    • "Recently, the use of pharmacological chaperones has also been suggested as a treatment strategy for MPS IIIB [69]. In general, the modulation of the proteostasis network is a promising pharmacological strategy to promote folding of unstable, degradation-prone enzymes containing missense mutations [26], [36], [39], [70]–[74]. Pharmacological chaperones, proteostasis modulators and small molecules that induce the read-through of premature stop codons have the potential to overcome several limitations of enzyme replacement therapies (ERT): they can be ingested orally and do not require life-long invasive infusions, thus improving the patient’s quality of life at lower costs than ERT. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG) activity in cultured cells is highly desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with Mucopolysaccharidosis type IIIB (MPS IIIB) due to mutations in NAGLU, the gene that encodes NAG. Currently available techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4-Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG), in a one-step cell assay that does not require cell disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB), a master regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of candidate molecules and constructs for applications in enzyme replacement therapy, gene therapy, and combination therapies.
    PLoS ONE 06/2013; 8(6):e68060. DOI:10.1371/journal.pone.0068060 · 3.23 Impact Factor
  • Source
    • "EerI, when administered under conditions that result in maximal increase in L444P GC activity, is associated with significant UPR induction and cell apoptosis, whereas lacidipine treatment induces UPR but does not cause apoptosis [14], [15]. We reported above that co-administration of lacidipine and EerI lowers apoptosis compared to treatment with EerI only (Figure 3). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gaucher’s disease (GD) is characterized by loss of lysosomal glucocerebrosidase (GC) activity. Mutations in the gene encoding GC destabilize the protein’s native folding leading to ER-associated degradation (ERAD) of the misfolded enzyme. Enhancing the cellular folding capacity by remodeling the proteostasis network promotes native folding and lysosomal activity of mutated GC variants. However, proteostasis modulators reported so far, including ERAD inhibitors, trigger cellular stress and lead to induction of apoptosis. We show herein that lacidipine, an L-type Ca2+ channel blocker that also inhibits ryanodine receptors on the ER membrane, enhances folding, trafficking and lysosomal activity of the most severely destabilized GC variant achieved via ERAD inhibition in fibroblasts derived from patients with GD. Interestingly, reprogramming the proteostasis network by combining modulation of Ca2+ homeostasis and ERAD inhibition remodels the unfolded protein response and dramatically lowers apoptosis induction typically associated with ERAD inhibition.
    PLoS ONE 04/2013; 8(4):e61418. DOI:10.1371/journal.pone.0061418 · 3.23 Impact Factor
Show more