Article

Direct measurement of tissue blood flow and metabolism with diffuse optics.

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.
Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences (Impact Factor: 2.86). 11/2011; 369(1955):4390-406. DOI: 10.1098/rsta.2011.0232
Source: PubMed

ABSTRACT Diffuse optics has proven useful for quantitative assessment of tissue oxy- and deoxyhaemoglobin concentrations and, more recently, for measurement of microvascular blood flow. In this paper, we focus on the flow monitoring technique: diffuse correlation spectroscopy (DCS). Representative clinical and pre-clinical studies from our laboratory illustrate the potential of DCS. Validation of DCS blood flow indices in human brain and muscle is presented. Comparison of DCS with arterial spin-labelled MRI, xenon-CT and Doppler ultrasound shows good agreement (0.50<r<0.95) over a wide range of tissue types and source detector distances, corroborating the potential of the method to measure perfusion non-invasively and in vivo at the microvasculature level. All-optical measurements of cerebral oxygen metabolism in both rat brain, following middle cerebral artery occlusion, and human brain, during functional activation, are also described. In both situations, the use of combined DCS and diffuse optical spectroscopy/near-infrared spectroscopy to monitor changes in oxygen consumption by the tissue is demonstrated. Finally, recent results spanning from gene expression-induced angiogenic response to stroke care and cancer treatment monitoring are discussed. Collectively, the research illustrates the capability of DCS to quantitatively monitor perfusion from bench to bedside, providing results that match up both with literature findings and with similar experiments performed with other techniques.

Full-text

Available from: Rickson Mesquita, Dec 26, 2013
0 Followers
 · 
133 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noninvasive measurement of hemodynamics at the microvascular level may have a great impact on oncology in clinics for diagnosis, therapy planning and monitoring, and, in preclinical studies. To this end, diffuse optics is a strong candidate for noninvasive, repeated, deep tissue monitoring. In this multi-disciplinary, translational work, I have constructed and deployed hybrid devices which are the combination of two qualitatively different methods, near infrared diffuse optical spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS), for simultaneous measurement of microvascular total hemoglobin concentration, blood oxygen saturation and blood flow. In a preclinical study, I applied the hybrid device to monitor the response of renal cell carcinoma in mice to antiangiogenic therapy. The results suggest that we can predict the output of therapy from early hemodynamic changes, which provide us with valuable information for better understanding of the tumor resistance mechanism to antiangiogenic therapies. In two in vivo studies in human volunteers, I have developed protocols and probes to demonstrate the feasibility of noninvasive diffuse optical spectroscopy to investigate the pathophysiology of bone. First study was study on the physiology of the patella microvasculature, the other introduced the manubrium as a site that is rich in red bone mar- row and accessible to diffuse optics as a potential window to monitor the progression of hematological malignancies. Overall, during my Ph.D., I have developed instrumentation, algorithms and protocols and, then, applied this technique for preclinical and clinical investigations. My research is a link between preclinical and clinical studies and it opens new areas of applications in oncology.
    01/2014, Degree: PhD, Supervisor: Turgut Durduran
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diffuse correlation spectroscopy (DCS) is an emerging optical modality used to measure cortical cerebral blood flow. This outlook presents a brief overview of the technology, summarizing the advantages and limitations of the method, and describing its recent applications to animal, adult, and infant cohorts. At last, the paper highlights future applications where DCS may play a pivotal role individualizing patient management and enhancing our understanding of neurovascular coupling, activation, and brain development.
    06/2014; 1(1). DOI:10.1117/1.NPh.1.1.011009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.
    Biomedical Optics Express 11/2014; 5(11). DOI:10.1364/BOE.5.004053 · 3.50 Impact Factor