Article

From orphan virus to pathogen: the path to the clinical lab

Blood Systems Research Institute, San Francisco, CA, USA.
Current opinion in virology 10/2011; 1(4):282-8. DOI: 10.1016/j.coviro.2011.07.006
Source: PubMed

ABSTRACT Viral metagenomics has recently yielded numerous previously uncharacterized viral genomes from human and animal samples. We review some of the metagenomics tools and strategies to determine which orphan viruses are likely pathogens. Disease association studies compare viral prevalence in patients with unexplained symptoms versus healthy individuals but require these case and control groups to be closely matched epidemiologically. The development of an antibody response in convalescent serum can temporarily link symptoms with a recent infection. Neutralizing antibody detection require often difficult cell culture virus amplification. Antibody binding assays require proper antigen synthesis and positive control sera to set assay thresholds. High levels of viral genetic diversity within orphan viral groups, frequent co-infections, low or rare pathogenicity, and chronic virus shedding, can all complicate disease association studies. The limited availability of matched cases and controls sample sets from different age groups and geographic origins is a major block for estimating the pathogenic potential of recently characterized orphan viruses. Current limitations on the practical use of deep sequencing for viral diagnostics are listed.

0 Bookmarks
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in RNA library preparation methods, platform accessibility and cost efficiency have allowed high-throughput RNA sequencing (RNAseq) to replace conventional hybridization microarray platforms as the method of choice for mRNA profiling and transcriptome analyses. RNAseq is a powerful technique to profile both long and short RNA expression, and the depth of information gained from distinct RNAseq methods is striking and facilitates discovery. In addition to expression analysis, distinct RNAseq approaches also allow investigators the ability to assess transcriptional elongation, DNA variance and exogenous RNA content. Here we review the current state of the art in transcriptome sequencing and address epigenetic regulation, quantification of transcription activation, RNAseq output and a diverse set of applications for RNAseq data. We detail how RNAseq can be used to identify allele-specific expression, single-nucleotide polymorphisms and somatic mutations and discuss the benefits and limitations of using RNAseq to monitor DNA characteristics. Moreover, we highlight the power of combining RNA- and DNAseq methods for genomic analysis. In summary, RNAseq provides the opportunity to gain greater insight into transcriptional regulation and output than simply miRNA and mRNA profiling.
    Briefings in Bioinformatics 09/2014; DOI:10.1093/bib/bbu032 · 5.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Comprehensive inventories of plant viral diversity are essential for effective quarantine and sanitation efforts. The safety of regulated plant material exchanges presently relies heavily on techniques such as PCR or nucleic acid hybridisation, which are only suited to the detection and characterisation of specific, well characterised pathogens. Here, we demonstrate the utility of sequence-independent next generation sequencing (NGS) of both virus-derived small interfering RNAs (siRNAs) and virion-associated nucleic acids (VANA) for the detailed identification and characterisation of viruses infecting two quarantined sugarcane plants. Both plants originated from Egypt and were known to be infected with Sugarcane streak Egypt Virus (SSEV; Genus Mastrevirus, Family Geminiviridae), but were revealed by the NGS approaches to also be infected by a second highly divergent mastrevirus, here named Sugarcane white streak Virus (SWSV). This novel virus had escaped detection by all routine quarantine detection assays and was found to also be present in sugarcane plants originating from Sudan. Complete SWSV genomes were cloned and sequenced from six plants and all were found to share >91% genome-wide identity. With the exception of two SWSV variants, which potentially express unusually large RepA proteins, the SWSV isolates display genome characteristics very typical to those of all other previously described mastreviruses. An analysis of virus-derived siRNAs for SWSV and SSEV showed them to be strongly influenced by secondary structures within both genomic single stranded DNA and mRNA transcripts. In addition, the distribution of siRNA size frequencies indicates that these mastreviruses are likely subject to both transcriptional and post-transcriptional gene silencing. Our study stresses the potential advantages of NGS-based virus metagenomic screening in a plant quarantine setting and indicates that such techniques could dramatically reduce the numbers of non-intercepted virus pathogens passing through plant quarantine stations.
    PLoS ONE 07/2014; 9(7):e102945. DOI:10.1371/journal.pone.0102945 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY The term 'shotgun metagenomics' is applied to the direct sequencing of DNA extracted from a sample without culture or target-specific amplification or capture. In diagnostic metagenomics, this approach is applied to clinical samples in the hope of detecting and characterizing pathogens. Here, I provide a conceptual overview, before reviewing several recent promising proof-of-principle applications of metagenomics in virus discovery, analysis of outbreaks and detection of pathogens in contemporary and historical samples. I also evaluate future prospects for diagnostic metagenomics in the light of relentless improvements in sequencing technologies.
    Parasitology 02/2014; 141(14):1-7. DOI:10.1017/S0031182014000134 · 2.36 Impact Factor

Full-text (2 Sources)

Download
28 Downloads
Available from
Jun 1, 2014