Programmed cell death 1 suppresses B-1b cell expansion and long-lived IgG production in response to T cell-independent type 2 antigens.

Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
The Journal of Immunology (Impact Factor: 5.36). 11/2011; 187(10):5183-95. DOI: 10.4049/jimmunol.1101990
Source: PubMed

ABSTRACT B-1b cells play a key role in producing Abs against T cell-independent type 2 Ags. However, the factors regulating Ab production by this unique B cell subset are not well understood. In this study, a detailed analysis of the B cell response to 2,4,6-trinitrophenol (TNP)-Ficoll was performed using normal mice. TNP-Ficoll delivered i.p. or i.v. induced rapid Ag-specific B-1b cell activation, expansion, isotype switching, and plasmablast/plasma cell differentiation. Ag-specific B-1b cell numbers peaked at day 5 and then gradually declined in the spleen but remained elevated in the peritoneal cavity beyond 40 d postimmunization. In addition to expressing CD43, CD44, and CD86, Ag-activated B-1b cells transiently expressed programmed cell death 1 (PD-1), which functionally suppressed BCR-induced B-1b cell in vitro proliferation when additional costimulatory signals were lacking. Inhibiting PD-1:PD-1 ligand interactions during TNP-Ficoll immunization significantly enhanced Ag-specific B-1b cell expansion and the frequency of IgG isotype switching and plasmablast/plasma cell differentiation. Remarkably, PD-1 mAb blockade during the first week following immunization resulted in significantly increased numbers of both splenic and bone marrow Ag-specific IgG3-secreting cells, but not IgM-secreting cells, at both early (day 5) and late (week 6) time points. Moreover, Ag-specific serum IgG3 levels, as well as IgG2c, IgG2b, and IgA levels, remained significantly elevated in PD-1 mAb-treated mice relative to control Ab-treated mice for ≥6 wk postimmunization. Thus, PD-1:PD-1 ligand interactions occurring shortly after initial T cell-independent type 2 Ag encounter play a critical role in suppressing Ag-specific B-1b cell expansion and the development of long-term IgG-producing bone marrow and spleen cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are multiple, distinct B-cell populations in human beings and other animals such as mice. In the latter species, there is a well-characterized subset of B-cells known as B1 cells, which are enriched in peripheral sites such as the peritoneal cavity but are rare in the blood. B1 cells can be further subdivided into B1a and B1b subsets. There may be additional B1 subsets, though it is unclear if these are distinct populations or stages in the developmental process to become mature B1a and B1b cells. A limitation in understanding B1 subsets is the relative paucity of specific surface markers. In contrast to mice, the existence of B1 cells in human beings is controversial and more studies are needed to investigate the nature of these enigmatic cells. Examples of B1b antigens include pneumococcal polysaccharide and the Vi antigen from Salmonella Typhi, both used routinely as vaccines in human beings and experimental antigens such as haptenated-Ficoll. In addition to inducing classical T-dependent responses some proteins are B1b antigens and can induce T-independent (TI) immunity, examples include factor H binding protein from Borrelia hermsii and porins from Salmonella. Therefore, B1b antigens can be proteinaceous or non-proteinaceous, induce TI responses, memory, and immunity, they exist in a diverse range of pathogenic bacteria, and a single species can contain multiple B1b antigens. An unexpected benefit to studying B1b cells is that they appear to have a propensity to recognize protective antigens in bacteria. This suggests that studying B1b cells may be rewarding for vaccine design as immunoprophylactic and immunotherapeutic interventions become more important due to the decreasing efficacy of small molecule antimicrobials.
    Frontiers in Immunology 01/2014; 5:535.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Formation of the splenic marginal zone (MZ) depends on the alternative NF-κB signaling pathway. Recently, we reported that unrestricted activation of this pathway in NF-κB2/p100-deficient (p100(-/-) ) knock-in mice alters the phenotype of MZ stroma and B cells. Here, we show that lack of the p100 inhibitor resulted in an expansion of both MZ B and peritoneal B-1 cells. However, these cells failed to generate proliferating blasts in response to T-cell-independent type 2 (TI-2) antigens, correlating with dampened IgM and absent IgG3 responses. This phenotype was in part due to increased activity of the NF-κB subunit RelB. Moreover, p100(-/-) →B6 bone marrow chimeras were more susceptible to infection by encapsulated Streptococcus pneumoniae bacteria, pathogens that induce TI-2 responses. In contrast to the TI-2 defect, p100 deficiency did not impair immune responses to the TI-1 antigen LPS and p100(-/-) MZ B cells showed normal antigen transportation into B-cell follicles. Furthermore, p100(-/-) MZ B and B-1 cells failed to respond to TI-2 antigens in the presence of wild-type accessory cells. Thus, NF-κB2/p100 deficiency caused a predominant B-cell-intrinsic TI-2 defect that could largely be attributed to impaired proliferation of plasmablasts. Importantly, p100 was also necessary for efficient defense against clinically relevant TI-2 pathogens.
    European Journal of Immunology 11/2013; · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ingestion of B. anthracis spores causes gastrointestinal (GI) anthrax. Humoral immune responses, in particular, IgA secreting B-1 cells, play a critical role in the clearance of GI pathogens. Here, we investigated whether B. anthracis impacts the function of colonic B-1 cells to establish active infection. GI anthrax infection led to significant inhibition of immunoglobulins (e.g., IgA) and increased program death-1 (PD-1) on B-1 cells. Furthermore, infection also diminished type 2 innate lymphoid cells (ILC2) and their ability to enhance differentiation and immunoglobulin production by secreting IL-5. Such B-1 cell and ILC2 dysfunction is potentially due to cleavage of p38 and Erk1/2 MAPK in these cells. Conversely, mice that survived infection generated neutralizing antibodies via the formation of robust germinal center B cells in Peyer's patches and had restored B-1 and ILC2 function. These data may provide additional insight for designing efficacious vaccines and therapeutics against such a deadly pathogen.
    The Journal of Infectious Diseases 05/2014; · 5.85 Impact Factor

Full-text (2 Sources)

Available from
Jun 10, 2014