Silica-chitosan hybrid coating on Ti for controlled release of growth factors.

Department of Materials Science and Engineering, Seoul National University, Seoul, Korea.
Journal of Materials Science Materials in Medicine (Impact Factor: 2.38). 12/2011; 22(12):2757-64. DOI: 10.1007/s10856-011-4458-5
Source: PubMed

ABSTRACT A hybrid material composed of a silica xerogel and chitosan was coated on Ti for the delivery of growth-factors. Fibroblast growth factor (FGF) and green fluorescence protein were incorporated into the coatings for hard tissue engineering. Silica was chosen as a coating material because of its high surface area as well as its good bioactivity. Chitosan provides mechanical stability and contributes to the control of the release rate of the growth factors. When the chitosan composition was 30% or more, the hybrid coating was stable physically and mechanically. The release of the growth-factors, observed in phosphate buffer solution at 37°C, was strongly dependent on the coating material. The hybrid coating containing FGF showed significantly improved osteoblast cell responses compared to the pure xerogel coating with FGF or the hybrid coating without FGF. These results indicate that the hybrid coating is potentially very useful in enhancing the bioactivity of metallic implants by delivering growth-factors in a controlled manner.

Download full-text


Available from: Jun-Hyeog Jang, Jan 07, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metals have been used as biostructural materials because of outstanding mechanical reliability. However, low bioactivity and high stiffness in biological environments have been major issues of metals, causing stress shielding effects or foreign body reactions after implantation. Therefore, in this study, densified porous titanium has been introduced to achieve comparable mechanical properties to hard tissues and bioactivity that promote a better interface between the implant and bone. Porous titanium scaffolds were successfully fabricated through dynamic freezing casting, and were densified, controlling the degree of densification by applied strain. During densification, structural integrity of porous titanium was well maintained without any mechanical deterioration, exhibiting good pore connectivity and large surface area. Densified porous titanium possesses two important features that have not been achieved by either dense titanium or porous titanium: 1) mechanical tunability of porous scaffolds through densification that allows scaffolds to be applied ranging from highly porous fillers to dense load-bearing implants and 2) improved bioactivity through bioactive coating that is capable of sustainable release through utilizing high surface area and pore connectivity with controllable tortuosity. This simple, but effective post-fabrication process of porous scaffolds has great potential to resolve unmet needs of biometals for biomedical applications.
    Biomaterials 10/2014; 37. DOI:10.1016/j.biomaterials.2014.10.027 · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to the disadvantages of the current bone autograft and allograft in many clinical condition in which bone regeneration is required in large quantity, engineered biomaterials combined with growth factors, such as bone morphogenetic protein-2 (BMP-2), have been demonstrated to be an effective approach in bone tissue engineering, since they can act both as a scaffold and as a drug delivery system to promote bone repair and regeneration. Recent advantages in the field of engineered scaffolds have been obtained from the investigation of composite scaffolds designed by the combination of bioceramics, especially hydroxyapatite (HA), and biodegradable polymers, such as poly (D,L-lactide-co-glycolide) (PLGA) and chitosan, in order to realize osteoconductive structures that can mimic the natural properties of bone tissue. Herein it is demonstrated that the incorporation of BMP-2 into different composite scaffolds, by encapsulation, absorption or entrapment, could be advantageous in terms of osteoinduction for new bone tissue engineered scaffolds as drug delivery systems and some of them should be further analyzed to optimized the drug release for future therapeutic applications. New design concepts and fabrication techniques represent novel challenges for further investigations about the development of scaffolds as a drug delivery system for bone tissue regeneration.
    Clinical Cases in Mineral and Bone Metabolism 01/2013; 10(3):155-161.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chitosan–silica/CpG oligodeoxynucleotide (ODN) nanohybrids were synthesized to stimulate Toll-like receptor 9-mediated induction of interleukin-6 (IL-6). The chitosan–silica hybrid was first synthesized from a mixture of chitosan and 3-glycidoxypropyl trimethoxysilane under acidic conditions via a sol–gel process, and then used to condense CpG ODN2006x3-PD to yield chitosan–silica/CpG ODN nanohybrids. Scanning electron micros-copy and atomic force microscopy showed that the chitosan–silica/CpG ODN nanohybrids had an elliptic shape with a diameter of 100–200 nm. After soaking in HAc–NaAc buffer solution (pH 5.5), the nanohybrids exhibited sustained release of CpG ODN. When the nanohybrids were separately exposed to 293XL-hTLR9 cells and periph-eral blood mononuclear cells, no significant toxicity was observed. An immunochemical assay for cellular uptake revealed that the nanohybrids were taken up by the cells and located in endolysosomes. An enzyme-linked immunosorbent assay for cytokines indicated that the nanohybrids effectively stimulated the induction of IL-6. Chitosan–silica/CpG ODN nanohybrids underwent cellular uptake and enhanced induction of IL-6 to a greater degree than conventional chitosan/CpG ODN nanocomplexes, indicating that they have an enhanced delivery efficiency.
    Materials Science and Engineering C 04/2013; 33(6):3382. DOI:10.1016/j.msec.2013.04.017 · 2.74 Impact Factor