Article

Silica-chitosan hybrid coating on Ti for controlled release of growth factors.

Department of Materials Science and Engineering, Seoul National University, Seoul, Korea.
Journal of Materials Science Materials in Medicine (Impact Factor: 2.14). 12/2011; 22(12):2757-64. DOI: 10.1007/s10856-011-4458-5
Source: PubMed

ABSTRACT A hybrid material composed of a silica xerogel and chitosan was coated on Ti for the delivery of growth-factors. Fibroblast growth factor (FGF) and green fluorescence protein were incorporated into the coatings for hard tissue engineering. Silica was chosen as a coating material because of its high surface area as well as its good bioactivity. Chitosan provides mechanical stability and contributes to the control of the release rate of the growth factors. When the chitosan composition was 30% or more, the hybrid coating was stable physically and mechanically. The release of the growth-factors, observed in phosphate buffer solution at 37°C, was strongly dependent on the coating material. The hybrid coating containing FGF showed significantly improved osteoblast cell responses compared to the pure xerogel coating with FGF or the hybrid coating without FGF. These results indicate that the hybrid coating is potentially very useful in enhancing the bioactivity of metallic implants by delivering growth-factors in a controlled manner.

0 Bookmarks
 · 
135 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to the disadvantages of the current bone autograft and allograft in many clinical condition in which bone regeneration is required in large quantity, engineered biomaterials combined with growth factors, such as bone morphogenetic protein-2 (BMP-2), have been demonstrated to be an effective approach in bone tissue engineering, since they can act both as a scaffold and as a drug delivery system to promote bone repair and regeneration. Recent advantages in the field of engineered scaffolds have been obtained from the investigation of composite scaffolds designed by the combination of bioceramics, especially hydroxyapatite (HA), and biodegradable polymers, such as poly (D,L-lactide-co-glycolide) (PLGA) and chitosan, in order to realize osteoconductive structures that can mimic the natural properties of bone tissue. Herein it is demonstrated that the incorporation of BMP-2 into different composite scaffolds, by encapsulation, absorption or entrapment, could be advantageous in terms of osteoinduction for new bone tissue engineered scaffolds as drug delivery systems and some of them should be further analyzed to optimized the drug release for future therapeutic applications. New design concepts and fabrication techniques represent novel challenges for further investigations about the development of scaffolds as a drug delivery system for bone tissue regeneration.
    Clinical Cases in Mineral and Bone Metabolism 01/2013; 10(3):155-161.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, a silica xerogel-chitosan hybrid is utilized as a coating material to incorporate bone morphogenic protein-2 (BMP-2) on a porous hydroxyapatite (HA) scaffold for bone tissue engineering. BMP-2 is known as a therapeutic agent for improving bone regeneration and repair. Silica xerogel-chitosan hybrids have been used for the delivery of a growth factor as well as osteoconductive coatings. The biological properties of the hybrid coating incorporated with BMP-2 were evaluated in terms of the BMP-2 release behavior, osteoblastic cellular responses and in vivo performance. BMP-2 was continuously released from the hybrid coating layer on the porous HA scaffold for up to 6 weeks. The hybrid coating containing BMP-2 showed significantly enhanced osteoblastic cell responses in comparison with the hybrid coating and HA substrate. Consequently, new bone formation was significantly increased within the hybrid coating containing BMP-2. These results reveal that the hybrid coating containing BMP-2 has the potential to be used as a bone implant, whose osteogenic properties are promoted by the release of BMP-2 in a controlled manner for a prolonged period of time.
    Journal of Materials Science Materials in Medicine 01/2013; · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chitosan–silica/CpG oligodeoxynucleotide (ODN) nanohybrids were synthesized to stimulate Toll-like receptor 9-mediated induction of interleukin-6 (IL-6). The chitosan–silica hybrid was first synthesized from a mixture of chitosan and 3-glycidoxypropyl trimethoxysilane under acidic conditions via a sol–gel process, and then used to condense CpG ODN2006x3-PD to yield chitosan–silica/CpG ODN nanohybrids. Scanning electron micros-copy and atomic force microscopy showed that the chitosan–silica/CpG ODN nanohybrids had an elliptic shape with a diameter of 100–200 nm. After soaking in HAc–NaAc buffer solution (pH 5.5), the nanohybrids exhibited sustained release of CpG ODN. When the nanohybrids were separately exposed to 293XL-hTLR9 cells and periph-eral blood mononuclear cells, no significant toxicity was observed. An immunochemical assay for cellular uptake revealed that the nanohybrids were taken up by the cells and located in endolysosomes. An enzyme-linked immunosorbent assay for cytokines indicated that the nanohybrids effectively stimulated the induction of IL-6. Chitosan–silica/CpG ODN nanohybrids underwent cellular uptake and enhanced induction of IL-6 to a greater degree than conventional chitosan/CpG ODN nanocomplexes, indicating that they have an enhanced delivery efficiency.
    Materials Science and Engineering C 04/2013; 33(6):3382. · 2.40 Impact Factor

Full-text (2 Sources)

Download
20 Downloads
Available from
May 29, 2014