Article

Strong photo-response in a flip-chip nanowire p-Cu2O/n-ZnO junction.

Physical and Materials Chemistry Division, National Chemical Laboratory, Dr Homi Bhabha Road, Pune, India.
Nanoscale (Impact Factor: 6.73). 11/2011; 3(11):4706-12. DOI: 10.1039/c1nr10665a
Source: PubMed

ABSTRACT Cu(2)O nanoneedles are synthesized on a copper substrate by a simple anodization and reducing ambient annealing protocol. ZnO nanorods are grown on ITO coated glass by a low temperature chemical route. The electronic and photo-response properties of the p-Cu(2)O/n-ZnO flip-chip heterojunction are then studied and analyzed. We show that the I-V characteristic is rectifying and the junction exhibits a good photoresponse (∼120% under 1 V reverse bias) under AM 1.5 (1 Sun) illumination. This nano-heterojunction photo-response is far stronger as compared to that of a pulsed laser deposited thin film p-Cu(2)O/n-ZnO heterojunction, which can be attributed to higher junction area in the former case.

1 Bookmark
 · 
156 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, "as grown" CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ∼470 μA cm(-2)) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers.
    Nanoscale 06/2014; · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3D nanoflower-like CuxO/multilayer graphene composites (CuMGCs) have been successfully synthesized as a new type of room temperature NOx gas sensor. Firstly, the expanded graphite (EG) was activated by KOH and many moderate functional groups were generated; secondly, Cu(CH3COO)2 and CTAB underwent full infusion into the interlayers of activated EG (aEG) by means of a vacuum-assisted technique and then reacted with the functional groups of aEG accompanied by the exfoliation of aEG via reflux. Eventually, the 3D nanoflower consisting of 5-9 nm CuxO nanoparticles homogeneously grow in situ on aEG. The KOH activation of EG plays a key role in the uniform formation of CuMGCs. When being used as gas sensors for detection of NOx, the CuMGCs achieved a higher response at room temperature than that of the corresponding CuxO. In detail, the CuMGCs show a higher NOx gas sensing performance with low detection limit of 97 ppb, high gas response of 95.1% and short response time of 9.6 s to 97.0 ppm NOx at room temperature. Meanwhile, the CuMGC sensor presents a favorable linearity, good selectivity and stability. The enhancement of the sensing response is mainly attributed to the improved conductivity of the CuMGCs. A series of Mott-Schottky and EIS measurements demonstrated that the CuMGCs have much higher donor densities than CuxO and can easily capture and migrate electrons from the conduction band, resulting in the enhancement of electrical conductivity.
    Nanoscale 05/2014; · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A heterostructure formed by a layer of agarose gel drop-cast on a hydrothermally grown layer of ZnO nanorods on fluorine-doped tin oxide (FTO)-coated glass is examined for photoresponse with a top platinum tip contact. This ionic-gel-based hybrid device shows three orders of magnitude higher photocurrent as compared to the case of bare ZnO nanorods film.
    Advanced Materials 06/2012; 24(27):3686-91. · 14.83 Impact Factor