Aquaporin-4-dependent edema clearance following status epilepticus.

Department of Neurological Surgery, University of California, Davis, CA, United States.
Epilepsy research (Impact Factor: 2.48). 02/2012; 98(2-3):264-8. DOI: 10.1016/j.eplepsyres.2011.09.016
Source: PubMed

ABSTRACT We investigated the role of aquaporin-4 in the development of cerebral edema following kainic acid-induced status epilepticus (SE) using specific gravimetry and T2 MRI techniques at 6 h, 1 day, 4 days and 7 days after SE. Our results indicate significantly greater tissue edema and T2 MRI changes in AQP4(-/-) compared to AQP4(+/+) mice that peaks at about 1 day after SE (greater in hippocampus relative to cortex). These results have implications for the mechanisms of edema formation and clearance following intense seizure activity.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glial cells play an important role in normal brain function and emerging evidence would suggest that their dysfunction may be responsible for some epileptic disease states. Neuroimaging of glial cells is desirable, but there are no clear methods to assess neither their function nor localization. Magnetic resonance imaging (MRI) is now part of a standardized epilepsy imaging protocol to assess patients. Structural volumetric and T2-weighted imaging changes can assist in making a positive diagnosis in a majority of patients. The alterations reported in structural and T2 imaging is predominately thought to reflect early neuronal loss followed by glial hypertrophy. MR spectroscopy for myo-inositol is a being pursued to identify glial alterations along with neuronal markers. Diffusion weighted imaging (DWI) is ideal for acute epileptiform events, but is not sensitive to either glial cells or neuronal long-term changes found in epilepsy. However, DWI variants such as diffusion tensor imaging or q-space imaging may shed additional light on aberrant glial function in the future. The sensitivity and specificity of PET radioligands, including those targeting glial cells (translocator protein) hold promise in being able to image glial cells. As the role of glial function/dysfunction in epilepsy becomes more transparent, neuroimaging methods will evolve to assist the clinician and researcher in visualizing their location and function.
    Neurochemistry International 05/2013; DOI:10.1016/j.neuint.2013.05.001 · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aquaporin-4 (AQP4) is one of the most abundant molecules in the brain and is particularly prevalent in astrocytic membranes at the blood-brain and brain-liquor interfaces. While AQP4 has been implicated in a number of pathophysiological processes, its role in brain physiology has remained elusive. Only recently has evidence accumulated to suggest that AQP4 is involved in such diverse functions as regulation of extracellular space volume, potassium buffering, cerebrospinal fluid circulation, interstitial fluid resorption, waste clearance, neuroinflammation, osmosensation, cell migration, and Ca(2+) signaling. AQP4 is also required for normal function of the retina, inner ear, and olfactory system. A review will be provided of the physiological roles of AQP4 in brain and of the growing list of data that emphasize the polarized nature of astrocytes.
    Physiological Reviews 10/2013; 93(4):1543-62. DOI:10.1152/physrev.00011.2013 · 29.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Manganese-enhanced MRI (MEMRI) has been considered a surrogate marker of Ca+2 influx into activated cells and tracer of neuronal active circuits. However, the induction of status epilepticus (SE) by kainic acid does not result in hippocampal MEMRI hypersignal, in spite of its high cell activity. Similarly, short durations of status (5 or 15 min) induced by pilocarpine did not alter the hippocampal MEMRI, while 30 min of SE even reduced MEMRI signal Thus, this study was designed to investigate possible explanations for the absence or decrease of MEMRI signal after short periods of SE. We analyzed hippocampal caspase-3 activation (to evaluate apoptosis), T2 relaxometry (tissue water content) and aquaporin 4 expression (water-channel protein) of rats subjected to short periods of pilocarpine-induced SE. For the time periods studied here, apoptotic cell death did not contribute to the decrease of the hippocampal MEMRI signal. However, T2 relaxation was higher in the group of animals subjected to 30 min of SE than in the other SE or control groups. This result is consistent with higher AQP-4 expression during the same time period. Based on apoptosis and tissue water content analysis, the low hippocampal MEMRI signal 30 min after SE can potentially be attributed to local edema rather than to cell death.
    Epilepsy research 05/2014; DOI:10.1016/j.eplepsyres.2014.02.007 · 2.48 Impact Factor

Full-text (2 Sources)

Available from
Dec 10, 2014