Effects of adenosine A(1) receptor antagonism on insulin secretion from rat pancreatic islets.

Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland.
Physiological research / Academia Scientiarum Bohemoslovaca (Impact Factor: 1.49). 12/2011; 60(6):905-11.
Source: PubMed

ABSTRACT Adenosine is known to influence different kinds of cells, including beta-cells of the pancreas. However, the role of this nucleoside in the regulation of insulin secretion is not fully elucidated. In the present study, the effects of adenosine A(1) receptor antagonism on insulin secretion from isolated rat pancreatic islets were tested using DPCPX, a selective adenosine A(1) receptor antagonist. It was demonstrated that pancreatic islets stimulated with 6.7 and 16.7 mM glucose and exposed to DPCPX released significantly more insulin compared with islets incubated with glucose alone. The insulin-secretory response to glucose and low forskolin appeared to be substantially potentiated by DPCPX, but DPCPX was ineffective in the presence of glucose and high forskolin. Moreover, DPCPX failed to change insulin secretion stimulated by the combination of glucose and dibutyryl-cAMP, a non-hydrolysable cAMP analogue. Studies on pancreatic islets also revealed that the potentiating effect of DPCPX on glucose-induced insulin secretion was attenuated by H-89, a selective inhibitor of protein kinase A. It was also demonstrated that formazan formation, reflecting metabolic activity of cells, was enhanced in islets exposed to DPCPX. Moreover, DPCPX was found to increase islet cAMP content, whereas ATP was not significantly changed. These results indicate that adenosine A(1) receptor blockade in rat pancreatic islets potentiates insulin secretion induced by both physiological and supraphysiological glucose concentrations. This effect is proposed to be due to increased metabolic activity of cells and increased cAMP content.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Under physiological conditions, insulin secretion from pancreatic β-cells is tightly regulated by different factors, including nutrients, nervous system, and other hormones. Pancreatic β-cells are also influenced by paracrine and autocrine interactions. The results of rodent studies indicate that adenosine is present within pancreatic islets and is implicated in the regulation of insulin secretion; however, effects depend on adenosine and glucose concentrations. Moreover, species differences in adenosine action were found. In rat islets, low adenosine was demonstrated to decrease glucose-induced insulin secretion and this effect is mediated via adenosine A1 receptor. In the presence of high adenosine concentrations, other mechanisms are activated and glucose-induced insulin secretion is increased. It is also well established that suppression of adenosine action increases insulin-secretory response of β-cells to glucose. In mouse islets, low adenosine concentrations do not significantly affect insulin secretion. However, in the presence of higher adenosine concentrations, potentiation of glucose-induced insulin secretion was demonstrated. It is also known that upon stimulation of insulin secretion, both rat and mouse islets release ATP. In rat islets, ATP undergoes extracellular conversion to adenosine. However, mouse islets are unable to convert extracellularly ATP to adenosine and adenosine arises from intracellular ATP degradation.
    Journal of physiology and biochemistry 11/2014; 71(1). DOI:10.1007/s13105-014-0371-y · 2.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
    Purinergic Signalling 11/2013; 10(1). DOI:10.1007/s11302-013-9396-x · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physical exercise improves glucose metabolism and insulin sensitivity. Brain-derived neurotrophic factor (BDNF) enhances insulin activity in diabetic rodents. Because physical exercise modifies BDNF production, this study aimed to investigate the effects of chronic exercise on plasma BDNF levels and the possible effects on insulin tolerance modification in healthy rats. Wistar rats were divided into five groups: control (sedentary, C); moderate- intensity training (MIT); MIT plus K252A TrkB blocker (MITK); high-intensity training (HIT); and HIT plus K252a (HITK). Training comprised 8 weeks of treadmill running. Plasma BDNF levels (ELISA assay), glucose tolerance, insulin tolerance, and immunohistochemistry for insulin and the pancreatic islet area were evaluated in all groups. In addition, Bdnf mRNA expression in the skeletal muscle was measured. Chronic treadmill exercise significantly increased plasma BDNF levels and insulin tolerance, and both effects were attenuated by TrkB blocking. In the MIT and HIT groups, a significant TrkB-dependent pancreatic islet enlargement was observed. MIT rats exhibited increased liver glycogen levels following insulin administration in a TrkB-independent manner. Chronic physical exercise exerted remarkable effects on insulin regulation by inducing significant increases in the pancreatic islet size and insulin sensitivity in a TrkB-dependent manner. A threshold for the induction of BNDF in response to physical exercise exists in certain muscle groups. To the best of our knowledge, these are the first results to reveal a role for TrkB in the chronic exercise-mediated insulin regulation in healthy rats.
    PLoS ONE 12/2014; 9(12):e115177. DOI:10.1371/journal.pone.0115177 · 3.53 Impact Factor


1 Download
Available from