Article

Dopamine and α-synuclein dysfunction in Smad3 null mice.

Departamento de Neurobiología-Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain.
Molecular Neurodegeneration (Impact Factor: 5.29). 01/2011; 6:72. DOI: 10.1186/1750-1326-6-72
Source: PubMed

ABSTRACT Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra (SN). Transforming growth factor-β1 (TGF-β1) levels increase in patients with PD, although the effects of this increment remain unclear. We have examined the mesostriatal system in adult mice deficient in Smad3, a molecule involved in the intracellular TGF-β1 signalling cascade.
Striatal monoamine oxidase (MAO)-mediated dopamine (DA) catabolism to 3,4-dihydroxyphenylacetic acid (DOPAC) is strongly increased, promoting oxidative stress that is reflected by an increase in glutathione levels. Fewer astrocytes are detected in the ventral midbrain (VM) and striatal matrix, suggesting decreased trophic support to dopaminergic neurons. The SN of these mice has dopaminergic neuronal degeneration in its rostral portion, and the pro-survival Erk1/2 signalling is diminished in nigra dopaminergic neurons, not associated with alterations to p-JNK or p-p38. Furthermore, inclusions of α-synuclein are evident in selected brain areas, both in the perikaryon (SN and paralemniscal nucleus) or neurites (motor and cingulate cortices, striatum and spinal cord). Interestingly, these α-synuclein deposits are detected with ubiquitin and P(S129)-α-synuclein in a core/halo cellular distribution, which resemble those observed in human Lewy bodies (LB).
Smad3 deficiency promotes strong catabolism of DA in the striatum (ST), decrease trophic and astrocytic support to dopaminergic neurons and may induce α-synuclein aggregation, which may be related to early parkinsonism. These data underline a role for Smad3 in α-synuclein and DA homeostasis, and suggest that modulatory molecules of this signalling pathway should be evaluated as possible neuroprotective agents.

0 Bookmarks
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is not only characterized by motor disturbances but also, by cognitive, sensory, psychiatric and autonomic dysfunction. It has been proposed that some of these symptoms might be related to the widespread pathology of α-synuclein (α-syn) aggregation in different nuclei of the central and peripheral nervous system. However, the pathogenic formation of α-syn aggregates in different brain areas of PD patients is poorly understood. Most experimental models of PD are valuable to assess specific aspects of its pathogenesis, such as toxin-induced dopaminergic neurodegeneration. However, new models are required that reflect the widespread and progressive formation of α-syn aggregates in different brain areas. Such α-syn aggregation is induced in only a few animal models, for example perikaryon inclusions are found in rats administered rotenone, aggregates with a neuritic morphology develop in mice overexpressing either mutated or wild-type α-syn, and in Smad3 deficient mice, aggregates form extensively in the perikaryon and neurites of specific brain nuclei. In this review we focus on α-syn aggregation in the human disorder, its genetics and the availability of experimental models. Indeed, evidences show that dopamine (DA) metabolism may be related to α-syn and its conformational plasticity, suggesting an interesting link between the two pathological hallmarks of PD: dopaminergic neurodegeneration and Lewy body (LB) formation.
    Acta Neuropathologica Communications. 12/2014; 2:176.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activated monoamine oxidase (MAO) has a critical role in the pathogenesis of Alzheimer's disease (AD), including the formation of amyloid plaques from amyloid β peptide (Aβ) production and accumulation, formation of neurofibrillary tangles, and cognitive impairment via the destruction of cholinergic neurons and disorder of the cholinergic system. Several studies have indicated that MAO inhibitors improve cognitive deficits and reverse Aβ pathology by modulating proteolytic cleavage of amyloid precursor protein and decreasing Aβ protein fragments. Thus, MAO inhibitors may be considered as promising therapeutic agents for AD.
    Molecular Medicine Reports 03/2014; · 1.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New neurons are continuously being generated in the adult hippocampus, a phenomenon that is regulated by external stimuli, such as learning, memory, exercise, environment or stress. However, the molecular mechanisms underlying neuron production and how they are integrated into existing circuits under such physiological conditions remain unclear. Indeed, the intracellular modulators that transduce the extracellular signals are not yet fully understood. We show that Smad3, an intracellular molecule involved in the transforming growth factor (TGF)-beta signaling cascade, is strongly expressed by granule cells in the dentate gyrus (DG) of adult mice, although the loss of Smad3 in null mutant mice does not affect their survival. Smad3 is also expressed by adult progenitor cells in the subgranular zone (SGZ) and more specifically, it is first expressed by Type 2 cells (intermediate progenitor cells). Its expression persists through the distinct cell stages towards that of the mature neuron. Interestingly, proliferative intermediate progenitor cells die in Smad3 deficiency, which is associated with a large decrease in the production of newborn neurons in Smad3 deficient mice. Smad3 signaling appears to influence adult neurogenesis fulfilling distinct roles in the rostral and mid-caudal regions of the DG. In rostral areas, Smad3 deficiency increases proliferation and promotes the cell cycle exit of undifferentiated progenitor cells. By contrast, Smad3 deficiency impairs the survival of newborn neurons in the mid-caudal region of the DG at early proliferative stages, activating apoptosis of intermediate progenitor cells. Furthermore, long-term potentiation (LTP) after high frequency stimulation (HFS) to the medial perforant path (MPP) was abolished in the DG of Smad3-deficient mice. These data show that endogenous Smad3 signaling is central to neurogenesis and LTP induction in the adult DG, these being two forms of hippocampal brain plasticity related to learning and memory that decline with aging and as a result of neurological disorders.
    Cell Communication and Signaling 12/2013; 11(1):93. · 4.67 Impact Factor

Full-text (2 Sources)

Download
51 Downloads
Available from
Jun 5, 2014