Use of mean spot urine sodium concentrations to estimate daily sodium intake in patients with chronic kidney disease

Department of Dietetics and Nutrition Service, Asan Medical Center, University of Ulsan, Seoul, Korea.
Nutrition (Impact Factor: 3.05). 03/2012; 28(3):256-61. DOI: 10.1016/j.nut.2011.06.006
Source: PubMed

ABSTRACT Sodium intake is an important issue for patients with chronic kidney disease (CKD). The two most widely used methods to measure sodium are 24-h urinary sodium excretion (24HUNa), which can be difficult to perform routinely, and sodium intake by dietary recall, which can be inaccurate. This study evaluated use of the mean value of three spot urinary sodium (UNa) concentrations to estimate daily sodium intake in patients with CKD.
This cross-sectional study enrolled 305 patients with CKD, none of whom were on dialysis, who visited the nephrology clinic at the Asan Medical Center (Seoul, Korea). We performed three spot UNa tests, three calculations of the UNa/creatinine (UCr) ratio, one measurement of 24HUNa, and one measurement of sodium intake by dietary recall.
The 24HUNa and mean spot UNa values were significantly lower in patients with more advanced CKD (P = 0.006 and P < 0.001, respectively). One-time spot UNa was significantly higher in the evening than in the morning for patients with stage III, IV, or V CKD. Total sodium intake, but not sodium nutrient density (milligrams of sodium per 1000 kcal), was significantly different for patients with different stages of CKD (P = 0.001). The correlation coefficient between 24HUNa and mean spot UNa was 0.477 (95% confidence interval [CI] 0.384-0.562, P < 0.001), slightly higher than that between 24HUNa excretion and mean spot UNa/UCr (r = 0.313, 95% CI 0.207-0.465, P < 0.001). There was a linear relation between spot UNa and 24HUNa: mean spot UNa = 0.27 × 24HUNa + 60. Therefore, a 24HUNa excretion of 87 mEq (sodium intake 2 g/d) corresponded to a mean spot UNa level of 83 mEq/L. The correlation coefficient between sodium intake and mean spot UNa was 0.435 (95% CI 0.336-0.524, P < 0.001), significantly higher than that between sodium intake and mean spot UNa/UCr (r = 0.197, 95% CI 0.091-0.301, P = 0.001). Mean spot UNa tended to be better correlated with 24HUNa than with sodium intake.
Mean spot UNa is a simple and effective method that can be used to monitor sodium intake in patients with CKD. A daily intake of 2 g of sodium corresponds to a mean spot UNa level of approximately 83 mEq/L in patients with CKD.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Limited data are available on the accuracy of 24-h dietary recalls used to monitor US sodium and potassium intakes. We examined the difference in usual sodium and potassium intakes estimated from 24-h dietary recalls and urine collections. We used data from a cross-sectional study in 402 participants aged 18-39 y (∼50% African American) in the Washington, DC, metropolitan area in 2011. We estimated means and percentiles of usual intakes of daily dietary sodium (dNa) and potassium (dK) and 24-h urine excretion of sodium (uNa) and potassium (uK). We examined Spearman's correlations and differences between estimates from dietary and urine measures. Multiple linear regressions were used to evaluate the factors associated with the difference between dietary and urine measures. Mean differences between diet and urine estimates were higher in men [dNa - uNa (95% CI) = 936.8 (787.1, 1086.5) mg/d and dK - uK = 571.3 (448.3, 694.3) mg/d] than in women [dNa - uNa (95% CI) = 108.3 (11.1, 205.4) mg/d and dK - uK = 163.4 (85.3, 241.5 mg/d)]. Percentile distributions of diet and urine estimates for sodium and potassium differed for men. Spearman's correlations between measures were 0.16 for men and 0.25 for women for sodium and 0.39 for men and 0.29 for women for potassium. Urinary creatinine, total caloric intake, and percentages of nutrient intake from mixed dishes were independently and consistently associated with the differences between diet and urine estimates of sodium and potassium intake. For men, body mass index was also associated. Race was associated with differences in estimates of potassium intake. Low correlations and differences between dietary and urinary sodium or potassium may be due to measurement error in one or both estimates. Future analyses using these methods to assess sodium and potassium intake in relation to health outcomes may consider stratifying by factors associated with the differences in estimates from these methods. This trial was registered at as NCT01631240. © 2015 American Society for Nutrition.
    American Journal of Clinical Nutrition 02/2015; 101(2):376-86. DOI:10.3945/ajcn.113.081604 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Despite evidence implicating dietary sodium in the pathogenesis of cardiovascular disease (CVD) in chronic kidney disease (CKD), quality intervention trials in CKD patients are lacking. This study aims to investigate the effect of reducing sodium intake on blood pressure, risk factors for progression of CKD and other cardiovascular risk factors in CKD. Methods/design The LowSALT CKD study is a six week randomized-crossover trial assessing the effect of a moderate (180 mmol/day) compared with a low (60 mmol/day) sodium intake on cardiovascular risk factors and risk factors for kidney function decline in mild-moderate CKD (stage III-IV). The primary outcome of interest is 24-hour ambulatory blood pressure, with secondary outcomes including arterial stiffness (pulse wave velocity), proteinuria and fluid status. The randomized crossover trial (Phase 1) is supported by an ancillary trial (Phase 2) of longitudinal-observational design to assess the longer term effectiveness of sodium restriction. Phase 2 will continue measurement of outcomes as per Phase 1, with the addition of patient-centered outcomes, such as dietary adherence to sodium restriction (degree of adherence and barriers/enablers), quality of life and taste assessment. DISCUSSION: The LowSALT CKD study is an investigator-initiated study specifically designed to assess the proof-of-concept and efficacy of sodium restriction in patients with established CKD. Phase 2 will assess the longer term effectiveness of sodium restriction in the same participants, enhancing the translation of Phase 1 results into practice. This trial will provide much-needed insight into sodium restriction as a treatment option to reduce risk of CVD and CKD progression in CKD patients. Trial registration Universal Trial Number: U1111-1125-2149. Australian New Zealand Clinical Trials Registry Number: ACTRN12611001097932.
    BMC Nephrology 10/2012; 13(1):137. DOI:10.1186/1471-2369-13-137 · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to assess the salt intake of Iranian children, and to assess the correlation of urinary electrolytes excretion with blood pressure. This cross-sectional study was conducted in 2011-2012 among 3-10-year-old children, selected by multi-stage cluster sampling from urban and rural areas of Isfahan, Iran. The sodium (Na), potassium (K), and creatinine (Cr) were measured in a random sample of the children's first morning fasting urine. Three-day averages of dietary intakes were analyzed by the Nutritionist-4 software. The mean (SD) of urinary Na was 177.17 (28.68) mEq/day without significant difference according to gender and living area. The mean (SD) dietary intakes of Na and K were 2017.76 (117.94) and 1119.06 (76.03) mg/day, respectively. Children of urban and rural areas consumed similar sources of salty foods (bread, cheese, and snacks) and had low intake of vegetables. No significant association was documented between urinary electrolytes excretions and blood pressure. This study, which to the best of our knowledge is the first of its kind in the Middle East and North Africa region, revealed that Iranian young children consume a large amount of sodium and small amount of potassium. The non-significant associations of electrolyte excretions with blood pressure may be because of the very young age group of participants. Given the development of preference to salt taste from early childhood, and the tracking of risk factors of chronic diseases from this age, reducing salt intake of young children should be emphasized.
    International journal of preventive medicine 04/2013; 4(4):475-83.