Effects of BRCA1 and BRCA2 mutations on female fertility.

Department of Family and Consumer Studies, University of Utah, 225 South 1400 East Alfred Emery Building 228, Salt Lake City, UT 84112, USA.
Proceedings of the Royal Society B: Biological Sciences (Impact Factor: 5.29). 04/2012; 279(1732):1389-95. DOI: 10.1098/rspb.2011.1697
Source: PubMed

ABSTRACT Women with BRCA1/2 mutations have a significantly higher lifetime risk of developing breast or ovarian cancer. We suggest that female mutation carriers may have improved fitness owing to enhanced fertility relative to non-carriers. Here we show that women who are carriers of BRCA1/2 mutations living in natural fertility conditions have excess fertility as well as excess post-reproductive mortality in relation to controls. Individuals who tested positive for BRCA1/2 mutations who linked into multi-generational pedigrees within the Utah Population Database were used to identify putative obligate carriers. We find that women born before 1930 who are mutation carriers have significantly more children than controls and have excess post-reproductive mortality risks. They also have shorter birth intervals and end child-bearing later than controls. For contemporary women tested directly for BRCA1/2 mutations, an era when modern contraceptives are available, differences in fertility and mortality persist but are attenuated. Our findings suggest the need to re-examine the wider role played by BRCA1/2 mutations. Elevated fertility of female mutation carriers indicates that they are more fecund despite their elevated post-reproductive mortality risks.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years the amount of experimental data that is produced in biomedical research and the number of papers that are being published in this field have grown rapidly. In order to keep up to date with developments in their field of interest and to interpret the outcome of experiments in light of all available literature, researchers turn more and more to the use of automated literature mining. As a consequence, text mining tools have evolved considerably in number and quality and nowadays can be used to address a variety of research questions ranging from de-novo drug target discovery to enhanced biological interpretation of the results from high throughput experiments. In this paper we introduce the most important techniques that are used for a text mining and give an overview of the text mining tools that are currently being used and the type of problems they are typically applied for. Copyright © 2015. Published by Elsevier Inc.
    Methods 01/2015; 74. DOI:10.1016/j.ymeth.2015.01.015 · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work. © 2015 S. Karger AG, Basel.
    Respiration 02/2015; 89(3). DOI:10.1159/000369861 · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We used age-period-cohort (APC) analyses to describe the simultaneous effects of age, period, and cohort on cancer incidence rates in an attempt to understand the population dynamics underlying their patterns among those aged 85+. Data from the Utah Cancer Registry (UCR), the US Census, the National Center for Health Statistics (NCHS), and the National Cancer Institute's Surveillance, Epidemiology and End Results (SEER) programme were used to generate age-specific estimates of cancer incidence at ages 65-99 from 1973 to 2002 for Utah. Our results showed increasing cancer incidence rates up to the 85-89 age group followed by declines at ages 90-99 when not confounded by the separate influences of period and cohort effects. We found significant period and cohort effects, suggesting the role of environmental mechanisms in cancer incidence trends between the ages of 85 and 100.
    Population Studies 11/2014; DOI:10.1080/00324728.2014.958192 · 1.08 Impact Factor