Article

Randomized Trial of Oral Teriflunomide for Relapsing Multiple Sclerosis

University of Toronto, Toronto, ON, Canada.
New England Journal of Medicine (Impact Factor: 54.42). 10/2011; 365(14):1293-303. DOI: 10.1056/NEJMoa1014656
Source: PubMed

ABSTRACT Teriflunomide is a new oral disease-modifying therapy for relapsing forms of multiple sclerosis.
We concluded a randomized trial involving 1088 patients with multiple sclerosis, 18 to 55 years of age, with a score of 0 to 5.5 on the Expanded Disability Status Scale and at least one relapse in the previous year or at least two relapses in the previous 2 years. Patients were randomly assigned (in a 1:1:1 ratio) to placebo, 7 mg of teriflunomide, or 14 mg of teriflunomide once daily for 108 weeks. The primary end point was the annualized relapse rate, and the key secondary end point was confirmed progression of disability for at least 12 weeks.
Teriflunomide reduced the annualized relapse rate (0.54 for placebo vs. 0.37 for teriflunomide at either 7 or 14 mg), with relative risk reductions of 31.2% and 31.5%, respectively (P<0.001 for both comparisons with placebo). The proportion of patients with confirmed disability progression was 27.3% with placebo, 21.7% with teriflunomide at 7 mg (P=0.08), and 20.2% with teriflunomide at 14 mg (P=0.03). Both teriflunomide doses were superior to placebo on a range of end points measured by magnetic resonance imaging (MRI). Diarrhea, nausea, and hair thinning were more common with teriflunomide than with placebo. The incidence of elevated alanine aminotransferase levels (≥1 times the upper limit of the normal range) was higher with teriflunomide at 7 mg and 14 mg (54.0% and 57.3%, respectively) than with placebo (35.9%); the incidence of levels that were at least 3 times the upper limit of the normal range was similar in the lower- and higher-dose teriflunomide groups and the placebo group (6.3%, 6.7%, and 6.7%, respectively). Serious infections were reported in 1.6%, 2.5%, and 2.2% of patients in the three groups, respectively. No deaths occurred.
Teriflunomide significantly reduced relapse rates, disability progression (at the higher dose), and MRI evidence of disease activity, as compared with placebo. (Funded by Sanofi-Aventis; TEMSO ClinicalTrials.gov number, NCT00134563.).

Download full-text

Full-text

Available from: Jerry S Wolinsky, Dec 18, 2013
0 Followers
 · 
243 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). The exact pathomechanism is unknown, but an aberrant immune response against CNS antigens, leading to inflammation in brain and spinal cord followed by demyelination, axonal damage and scar formation, seems to play a major role. Later in the disease course, inflammation decreases, while neurodegeneration proceeds. Approximately 80% of the patients initially show a relapsing-remitting disease course (RRMS), but the majority of them later develops a secondary progressive MS (SPMS). A minority suffers from primary progressive MS (PPMS). Primary goals of long-term MS therapy are to prevent relapses and disease progression. Assuming that MS is an autoimmune disease, most therapeutics aim to modulate or suppress the immune system. Until now many drugs have proven efficacy in RRMS, but none in PPMS. Interferon-β (IFN-β) and glatiramer acetate are known in RRMS therapy for years. Based on preclinical research and clinical trials, new treatment strategies have emerged and were transferred from bench to bedside. The 4β-integrin-antagonist natalizumab was approved in 2005. Fingolimod, BG12 and teriflunomide were the first oral drugs introduced in MS therapy. Recently alemtuzuab another monoclonal antibody was approved. Promising future perspectives are alemtuzumab, daclizumab, and laquinimod. Here, we review drug mechanisms in the therapy of MS. The mechanisms of action and the effect of the drugs on the immune system are summarized. We report recent results of clinical trials, highlight special features of different treatment strategies, and discuss future perspectives and ongoing clinical trials.
    Current Pharmaceutical Biotechnology 06/2014; DOI:10.2174/1389201015666140617104332 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Daclizumab is a humanized monoclonal antibody of the immunoglobulin G1 (IgG1) isotype that binds to the α-subunit (CD25) of the high-affinity interleukin-2 (IL-2) receptor expressed on activated T cells and CD4+CD25+FoxP3+ regulatory T cells. Based on the assumption that it would block the activation and expansion of autoreactive T cells that are central to the immune pathogenesis of multiple sclerosis (MS), daclizumab was tested in several small open-label clinical trials in MS and demonstrated a profound inhibition of inflammatory disease activity. Surprisingly, accompanying mechanistic studies revealed that the most important biological effect of daclizumab was rather a dramatic expansion and activation of immunoregulatory CD56(bright) natural-killer (NK) cells that correlated with treatment response, while there was no or only minor effect on peripheral T-cell activation and function. These CD56(bright) NK cells were able to gain access to the central nervous system in MS and kill autologous activated T cells. Additional and relatively large phase IIb clinical trials showed that daclizumab, as add-on or monotherapy in relapsing-remitting (RR) MS, was highly effective in reducing relapse rate, disability progression, and the number and volume of gadolinium-enhancing, T1 and T2 lesions on brain magnetic resonance imaging (MRI), and reproduced the expansion of CD56(bright) NK cells as a biomarker for daclizumab activity. Daclizumab is generally very well tolerated and has shown a favorable adverse event (AE) profile in transplant recipients. However, several potentially serious and newly emerging AEs (mainly infections, skin reactions, elevated liver function tests and autoimmune phenomena in several body organs) may require strict safety monitoring programs in future clinical practice and place daclizumab together with other new and highly effective MS drugs as a second-line therapy. Ongoing phase III clinical trials in RRMS are expected to provide definite information on the efficacy and safety of daclizumab and to determine its place in the fast-growing armamentarium of MS therapies.
    Therapeutic Advances in Neurological Disorders 01/2014; 7(1):7-21. DOI:10.1177/1756285613504021
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a potentially disabling chronic autoimmune neurological disease that mainly affects young adults. Our understanding of the pathophysiology of MS has significantly advanced in the past quarter of a century. This has led to the development of many disease-modifying therapies (DMTs) that prevent exacerbations and new lesions in patients with relapsing remitting MS (RRMS). So far there is no drug available that can completely halt the neurodegenerative changes associated with the disease. It is the purpose of this review to provide concise information regarding mechanism of action, indications, side effects and safety of Food and Drug Administration and European Medicines Agency approved agents for MS, emerging therapies, and drugs that can be considered for off-label use in MS.
    Therapeutic Advances in Neurological Disorders 07/2012; 5(4):205-20. DOI:10.1177/1756285612450936