Article

Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry.

Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA.
Foodborne Pathogens and Disease (Impact Factor: 2.28). 01/2012; 9(1):37-46. DOI: 10.1089/fpd.2011.0961
Source: PubMed

ABSTRACT The emergence of plasmid-mediated multidrug resistance (MDR) among enteric bacteria presents a serious challenge to the treatment of bacterial infections in humans and animals. Recent studies suggest that avian Escherichia coli commonly possess the ability to resist multiple antimicrobial agents, and might serve as reservoirs of MDR for human extraintestinal pathogenic Escherichia coli (ExPEC) and commensal E. coli populations. We determined antimicrobial susceptibility profiles for 2202 human and avian E. coli isolates, then sought for associations among resistance profile, plasmid content, virulence factor profile, and phylogenetic group. Avian-source isolates harbored greater proportions of MDR than their human counterparts, and avian ExPEC had higher proportions of MDR than did avian commensal E. coli. MDR was significantly associated with possession of the IncA/C, IncP1-α, IncF, and IncI1 plasmid types. Overall, inferred virulence potential did not correlate with drug susceptibility phenotype. However, certain virulence genes were positively associated with MDR, including ireA, ibeA, fyuA, cvaC, iss, iutA, iha, and afa. According to the total dataset, isolates segregated significantly according to host species and clinical status, thus suggesting that avian and human ExPEC and commensal E. coli represent four distinct populations with limited overlap. These findings suggest that in extraintestinal E. coli, MDR is most commonly associated with plasmids, and that these plasmids are frequently found among avian-source E. coli from poultry production systems.

1 Bookmark
 · 
271 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in both human and animal medicine and agriculture and in countries around the world.
    Foodborne Pathogens and Disease 01/2015; DOI:10.1089/fpd.2014.1865 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract This study characterized 52 Escherichia coli isolates from distinct diseased organs of 29 broiler chickens with clinical symptoms of colibacillosis in the Southern Brazilian state of Rio Grande do Sul. Thirty-eight isolates were highly virulent and 14 were virtually avirulent in 1-day-old chicks, yet all isolates harbored virulence factors characteristic of avian pathogenic E. coli (APEC), including those related to adhesion, iron acquisition, and serum resistance. E. coli reference collection phylogenetic typing showed that isolates belonged mostly to group D (39%), followed by group A (29%), group B1 (17%), and group B2 (15%). Phylogenetic analyses using the Amplified Ribosomal DNA Restriction Analysis and pulse-field gel electrophoresis methods were used to discriminate among isolates displaying the same serotype, revealing that five birds were infected with two distinct APEC strains. Among the 52 avian isolates, 2 were members of the pandemic E. coli O25:H4-B2-ST131 clone.
    Foodborne Pathogens and Disease 12/2014; DOI:10.1089/fpd.2014.1815 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Between 70 and 95% of urinary tract infections (UTI) are caused by strains of Escherichia coli. These strains, often termed Extraintestinal Pathogenic E. coli (ExPEC), possess specific virulence traits allowing them to colonize more inhospitable environments, such as the urogenital tract. Some ExPEC isolates from humans have similar virulence factor profiles to ExPEC isolates from animals, and because of the potential for these strains to cause UTI in people, these infections have been referred to as foodborne UTI, or FUTI. Finding similarities in ExPEC in animals and humans is not necessarily proof of transmission, particularly a unidirectional pathway from animals to humans; similarities in virulence factor profiles should be expected given the specific bacterial requirements for colonizing physiological compartments with similar characteristics in all animals. Many of the most important strains of human ExPEC globally, such as ST131, are highly virulent and clonal implying routes of transmission other than food. Documenting routes of transmission is particularly difficult due to the wide range of potential ExPEC sources, including the human intestinal tract, and non-human reservoirs such as food animals and retail meat products, sewage and other environmental sources, and companion animals. The significant environmental reservoir of ExPEC, including strains such as ST131, could potentially explain much more completely the global dissemination of virulent ExPEC clones and the rapid dissemination of new strains within the community. Taken in its totality, the link between ExPEC in animals and UTI in humans might exist, but studies conducted to date do not enable an estimation of the relative importance of this route of transmission. To reduce the burden of illness associated with ExPEC, the scientific community needs to push forward with ecologically-based, scientifically-sound study designs that can address the plethora of ways in which E. coli can spread.
    Frontiers in Microbiology 02/2015; 6. DOI:10.3389/fmicb.2015.00028 · 3.94 Impact Factor

Full-text (2 Sources)

Download
39 Downloads
Available from
May 22, 2014