Article

The clinical implications and biologic relevance of neurofilament expression in gastroenteropancreatic neuroendocrine neoplasms

Department of Gastroenterological Surgery, Yale University School of Medicine, New Haven, CT, USA.
Cancer (Impact Factor: 5.2). 05/2012; 118(10):2763-75. DOI: 10.1002/cncr.26592
Source: PubMed

ABSTRACT Although gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) exhibit widely divergent behavior, limited biologic information (apart from Ki-67) is available to characterize malignancy. Therefore, the identification of alternative biomarkers is a key unmet need. Given the role of internexin alpha (INA) in neuronal development, the authors assessed its function in neuroendocrine cell systems and the clinical implications of its expression as a GEP-NEN biomarker.
Functional assays were undertaken to investigate the mechanistic role of INA in the pancreatic BON cell line. Expression levels of INA were investigated in 50 pancreatic NENs (43 primaries, 7 metastases), 43 small intestinal NENs (25 primaries, 18 metastases), normal pancreas (n = 10), small intestinal mucosa (n = 16), normal enterochromaffin (EC) cells (n = 9), mouse xenografts (n = 4) and NEN cell lines (n = 6) using quantitative polymerase chain reaction, Western blot, and immunostaining analyses.
In BON cells, decreased levels of INA messenger RNA and protein were associated with the inhibition of both proliferation and mitogen-activated protein kinase (MAPK) signaling. INA was not expressed in normal neuroendocrine cells but was overexpressed (from 2-fold to 42-fold) in NEN cell lines and murine xenografts. In pancreatic NENs, INA was overexpressed compared with pancreatic adenocarcinomas and normal pancreas (27-fold [P = .0001], and 9-fold [P = .02], respectively). INA transcripts were correlated positively with Ki-67 (correlation coefficient [r] = 0.5; P < .0001) and chromogranin A (r = 0.59; P < .0001). INA distinguished between primary tumors and metastases (P = .02), and its expression was correlated with tumor size, infiltration, and grade (P < .05).
INA is a novel NEN biomarker, and its expression was associated with MAPK signaling and proliferation. In clinical samples, elevated INA was correlated with Ki-67 and identified malignancy. INA may provide additional biologic information relevant to delineation of both pancreatic NEN tumor phenotypes and clinical behavior.

Full-text

Available from: Mark Kidd, Mar 30, 2015

Click to see the full-text of:

Article: The clinical implications and biologic relevance of neurofilament expression in gastroenteropancreatic neuroendocrine neoplasms

2.82 MB

See full-text
0 Bookmarks
 · 
164 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromogranin A is a neuroendocrine secretory product and its loss is a feature of malignant NEN de-differentiation. We hypothesized that chromogranin A fragments were differentially expressed during NEN metastasis and played a role in the regulation of NEN proliferation. Chromogranin A mRNA (PCR) and protein (ELISA/western blot) were studied in 10 normal human mucosa, 5 enterochromaffin cell preparations, 26 small intestinal NEN primaries and 9 liver metastases. Cell viability (WST-1 assay), proliferation (bromodeoxyuridine ELISA) and expression of AKT/AKT-P (CASE ELISA/western blot) in response to chromogranin A silencing, inhibition of prohormone convertase and mTOR inhibition (RAD001/AKT antisense) as well as different chromogranin A fragments were examined in 4 SI-NEN cell lines. Chromogranin A mRNA and protein levels were increased (37-340 fold, p<0.0001) in small intestinal NENs compared to normal enterochromaffin cells. Western blot identified chromogranin A-associated processing bands including vasostatin in small intestinal NENs as well as up-regulated expression of prohormone convertase in metastases. Proliferation in small intestinal NEN cell lines was decreased by silencing chromogranin A as well as by inhibition of prohormone convertase (p<0.05). This inhibition also decreased secretion of chromogranin A (p<0.05) and 5-HT (p<0.05) as well as expression of vasostatin. Metastatic small intestinal NEN cell lines were stimulated (50-80%, p<0.05) and AKT phosphorylated (Ser473: p<0.05) by vasostatin I, which was completely reversed by RAD001 (p<0.01) and AKT antisense (p<0.05) while chromostatin inhibited proliferation (~50%, p<0.05). Chromogranin A was differentially regulated in primary and metastatic small intestinal NENs and cell lines. Chromogranin A fragments regulated metastatic small intestinal NEN proliferation via the AKT pathway indicating that CgA plays a far more complex role in the biology of these tumors than previously considered.
    PLoS ONE 11/2013; 8(11):e81111. DOI:10.1371/journal.pone.0081111 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The chromatin remodeler NAP1L1, which is upregulated in small intestinal neuroendocrine neoplasms (NENs), has been implicated in cell cycle progression. As p57(Kip2) (CDKN1C), a negative regulator of proliferation and a tumor suppressor, is controlled by members of the NAP1 family, we tested the hypothesis that NAP1L1 may have a mechanistic role in regulating pancreatic NEN proliferation through regulation of p57(Kip2).
    Epigenetics & Chromatin 07/2014; 7:15. DOI:10.1186/1756-8935-7-15 · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genes with altered DNA methylation can be used as biomarkers for cancer detection and assessment of prognosis. Here we analyzed the methylation status of a colorectal cancer biomarker panel (CNRIP1, FBN1, INA, MAL, SNCA, and SPG20) in 97 cancer cell lines, derived from 17 different cancer types. Interestingly, the genes were frequently methylated also in hematological cancer types and were therefore subjected to analyses in primary tumor samples from the major types of non-Hodgkin lymphomas (NHL) and in healthy controls. In total, the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 were methylated in 53%, 23%, 52%, 69%, 97%, and 92% of the tumor samples, respectively, and were unmethylated in all healthy controls. With the exception of a single tumor sample, a correct prediction of lymphoma or normal sample was made in a blinded analysis of the validation series using a combination of SNCA and SPG20. The combined ROC-curve analysis of these genes resulted in an area under the curve of 0.999 (P = 4.2 × 10(-18)), and a sensitivity and specificity of 98% and 100%, respectively, across the test and validation series. Interestingly, the promoter methylation of CNRIP1 was associated with decreased overall survival in DLBCL (P = 0.03). In conclusion, our results demonstrate that SNCA and SPG20 methylation might be suitable for early detection and monitoring of NHL. Furthermore, CNRIP1 could potentially be used as a prognostic factor in DLBCL.
    Epigenetics: official journal of the DNA Methylation Society 12/2013; 9(3). DOI:10.4161/epi.27554 · 5.11 Impact Factor