Geometry of volumes in radiotherapy planning. A new method for a quantitative assessment.

Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.
Tumori 01/2011; 97(4):503-9. DOI: 10.1700/950.10405
Source: PubMed

ABSTRACT The purpose of the study was to develop a general method able to quantify the mutual disposition in the 3D space of critical organs with respect to the target when these structures are designed for a radiotherapy treatment plan. To that end, we introduce the "expansion intersection histogram", a function defined as the intersection between an organ at risk and the target volume, while the target is expanded in 3D.
A software was developed to calculate the expansion intersection histogram of anatomical structures exported in a DICOM format from a commercial treatment planning system. A virtual phantom with spherical and cylindrical objects arranged in different dispositions in the 3D space was created for testing the software under known conditions.
Expansion intersection histogram computation was tested against reference data derived analytically for spherical volumes, with a resulting maximum error of 0.5%. Specific geometric features derived from the expansion intersection histogram, such as the distance between a selected target and each different ideal volume included in the virtual phantom, well matched the corresponding theoretical expected values. The expansion intersection histogram was evaluated also for the anatomical structures of a real patient. Data show this method as a tool to effectively take into account the mutual disposition of each critical organ with respect to the target, summarized in characteristics of distance, shape and orientation. The expansion intersection histogram method integrates and extends other preexisting modalities for evaluating the geometrical relationships among radiotherapy volumes and could be used to improve planning optimization.


Available from: Giovanni Naldi, Jun 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, the sophistication and complexity of clinical treatment planning and treatment planning systems has increased significantly, particularly including three-dimensional (3D) treatment planning systems, and the use of conformal treatment planning and delivery techniques. This has led to the need for a comprehensive set of quality assurance (QA) guidelines that can be applied to clinical treatment planning. This document is the report of Task Group 53 of the Radiation Therapy Committee of the American Association of Physicists in Medicine. The purpose of this report is to guide and assist the clinical medical physicist in developing and implementing a comprehensive but viable program of quality assurance for modern radiotherapy treatment planning. The scope of the QA needs for treatment planning is quite broad, encompassing image-based definition of patient anatomy, 3D beam descriptions for complex beams including multileaf collimator apertures, 3D dose calculation algorithms, and complex plan evaluation tools including dose volume histograms. The Task Group recommends an organizational framework for the task of creating a QA program which is individualized to the needs of each institution and addresses the issues of acceptance testing, commissioning the planning system and planning process, routine quality assurance, and ongoing QA of the planning process. This report, while not prescribing specific QA tests, provides the framework and guidance to allow radiation oncology physicists to design comprehensive and practical treatment planning QA programs for their clinics.
    Medical Physics 11/1998; 25(10):1773-829. DOI:10.1118/1.598373 · 3.01 Impact Factor
  • Clinical Oncology 05/2007; 19(3 Suppl):S43. DOI:10.1016/j.clon.2007.01.409 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Computerized radiation therapy planning systems (RTPSs) are pivotal for treatment planning. The acceptance, commissioning, and quality control of RTPSs are uniquely complex and are described in the American Association of Physicists in Medicine Task Group Report 53 (1998) and International Atomic Energy Agency Technical Report Series No. 430 (2004). The International Atomic Energy Agency also developed a document and data package for use by vendors and purchasers to aid with acceptance testing of RTPSs. This document is based on International Electrotechnical Commission standard 62083 (2000) and describes both "type" tests to be performed in the factory and "site" tests to be performed in the clinic. The American Association of Physicists Task Group Report 67 described benchmark tests for the validation of dose calculation algorithms. Test data are being produced with the backing of the U.S. National Cancer Institute. However, significant challenges remain. Technology keeps evolving rapidly, thus requiring new quality assurance (QA) procedures. Intensity-modulated radiation therapy with its use of inverse optimization has added a new dimension to QA, because the results are not intuitively obvious. New technologies such as real-time ultrasound guidance for brachytherapy, TomoTherapy, and Cyberknife, require their own specialized RTPSs with unique QA requirements. On-line imaging allows for the generation of dose reconstructions using image warping techniques to determine the daily dose delivered to the patient. With increasing computer speeds, real-time reoptimization of treatment plans will become a reality. Gating technologies will require four-dimensional dose calculations to determine the actual dose delivered to tissue voxels. With these rapidly changing technologies, it is essential that a strong QA culture is invoked in every institution implementing these procedures and that new protocols are developed as a part of the clinical implementation process.
    International Journal of Radiation OncologyBiologyPhysics 02/2008; 71(1 Suppl):S23-7. DOI:10.1016/j.ijrobp.2007.04.095 · 4.18 Impact Factor