Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility.

Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA.
Human Molecular Genetics (Impact Factor: 6.68). 01/2012; 21(1):208-18. DOI: 10.1093/hmg/ddr455
Source: PubMed

ABSTRACT Long interspersed element-1 (LINE-1 or L1) retrotransposons account for nearly 17% of human genomic DNA and represent a major evolutionary force that has reshaped the structure and function of the human genome. However, questions remain concerning both the frequency and the developmental timing of L1 retrotransposition in vivo and whether the mobility of these retroelements commonly results in insertional and post-insertional mechanisms of genomic injury. Cells exhibiting high rates of L1 retrotransposition might be especially at risk for such injury. We assessed L1 mRNA expression and L1 retrotransposition in two biologically relevant cell types, human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), as well as in control parental human dermal fibroblasts (HDFs). Full-length L1 mRNA and the L1 open reading frame 1-encoded protein (ORF1p) were readily detected in hESCs and iPSCs, but not in HDFs. Sequencing analysis proved the expression of human-specific L1 element mRNAs in iPSCs. Bisulfite sequencing revealed that the increased L1 expression observed in iPSCs correlates with an overall decrease in CpG methylation in the L1 promoter region. Finally, retrotransposition of an engineered human L1 element was ~10-fold more efficient in iPSCs than in parental HDFs. These findings indicate that somatic cell reprogramming is associated with marked increases in L1 expression and perhaps increases in endogenous L1 retrotransposition, which could potentially impact the genomic integrity of the resultant iPSCs.


Available from: John V Moran, Jun 15, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over half of our genome is composed of retrotransposons, which are mobile elements that can readily amplify their copy number by replicating through an RNA intermediate. Most of these elements are no longer mobile but still contain regulatory sequences that can serve as promoters, enhancers or repressors for cellular genes. Despite dominating our genetic content, little is known about the precise functions of retrotransposons, which include both endogenous retroviruses (ERVs) and non-LTR elements like long interspersed nuclear element 1 (LINE-1). However, a few recent cutting-edge publications have illustrated how retrotransposons shape species-specific stem cell gene expression by two opposing mechanisms, involving their recruitment of stem cell-enriched transcription factors (TFs): firstly, they can activate expression of genes linked to naïve pluripotency, and secondly, they can induce repression of proximal genes. The paradox that different retrotransposons are active or silent in embryonic stem cells (ESCs) can be explained by differences between retrotransposon families, between individual copies within the same family, and between subpopulations of ESCs. Since they have coevolved with their host genomes, some of them have been co-opted to perform species-specific beneficial functions, while others have been implicated in genetic disease. In this review, we will discuss retrotransposon functions in ESCs, focusing on recent mechanistic advances of how HERV-H has been adopted to preserve human naïve pluripotency and how particular LINE-1, SVA and ERV family members recruit species-specific transcriptional repressors. This review highlights the fine balance between activation and repression of retrotransposons that exists to harness their ability to drive evolution, while minimizing the risk they pose to genome integrity.
    Retrovirology 05/2015; 12(1):45. DOI:10.1186/s12977-015-0173-5 · 4.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Somatic LINE-1 (L1) retrotransposition during neurogenesis is a potential source of genotypic variation among neurons. As a neurogenic niche, the hippocampus supports pronounced L1 activity. However, the basal parameters and biological impact of L1-driven mosaicism remain unclear. Here, we performed single-cell retrotransposon capture sequencing (RC-seq) on individual human hippocampal neurons and glia, as well as cortical neurons. An estimated 13.7 somatic L1 insertions occurred per hippocampal neuron and carried the sequence hallmarks of target-primed reverse transcription. Notably, hippocampal neuron L1 insertions were specifically enriched in transcribed neuronal stem cell enhancers and hippocampus genes, increasing their probability of functional relevance. In addition, bias against intronic L1 insertions sense oriented relative to their host gene was observed, perhaps indicating moderate selection against this configuration in vivo. These experiments demonstrate pervasive L1 mosaicism at genomic loci expressed in hippocampal neurons. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell 04/2015; 161(2):228-239. DOI:10.1016/j.cell.2015.03.026 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LINE-1s (L1s), the only currently active autonomous mobile DNA in humans, occupy at least 17% of human DNA. Throughout evolution, the L1 has also been responsible for genomic insertion of thousands of processed pseudogenes and over one million nonautonomous retrotransposons called SINEs (mainly Alus and SVAs). The 6-kb human L1 has a 5[prime]- untranslated region (UTR) that functions as an internal promoter, two open reading frames--ORF1, which encodes an RNA-binding protein, and ORF2, which expresses endonuclease and reverse transcriptase activities--and a 3[prime]-UTR which ends in a poly(A) signal and tail. Most L1s are molecular fossils: truncated, rearranged or mutated. However, 80 to 100 remain potentially active in any human individual, and to date 101 de novo disease-causing germline retrotransposon insertions have been characterized. It is now clear that significant levels of retrotransposition occur not only in the human germline but also in some somatic cell types. Recent publications and new investigations under way suggest that this may especially be the case for cancers and neuronal cells. This commentary offers a few points to consider to aid in avoiding misinterpretation of data as these studies move forward.
    Mobile DNA 04/2014; 5(1):11. DOI:10.1186/1759-8753-5-11 · 2.43 Impact Factor