Cap-snatching mechanism in yeast L-A double-stranded RNA virus

Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Edificio Departamental, Avenida del Campo Charro, Salamanca 37007, Spain.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 10/2011; 108(43):17667-71. DOI: 10.1073/pnas.1111900108
Source: PubMed

ABSTRACT The 5' cap structure (m(7)GpppX-) is an essential feature of eukaryotic mRNA required for mRNA stability and efficient translation. Influenza virus furnishes its mRNA with this structure by a cap-snatching mechanism, in which the viral polymerase cleaves host mRNA endonucleolytically 10-13 nucleotides from the 5' end and utilizes the capped fragment as a primer to synthesize viral transcripts. Here we report a unique cap-snatching mechanism by which the yeast double-stranded RNA totivirus L-A furnishes its transcript with a cap structure derived from mRNA. Unlike influenza virus, L-A transfers only m(7)Gp from the cap donor to the 5' end of the viral transcript, thus preserving the 5' α- and β-phosphates of the transcript in the triphosphate linkage of the final product. This in vitro capping reaction requires His154 of the coat protein Gag, a residue essential for decapping of host mRNA and known to form m(7)Gp-His adduct. Furthermore, the synthesis of capped viral transcripts in vivo and their expression were greatly compromised by the Arg154 mutation, indicating the involvement of Gag in the cap-snatching reaction. The overall reaction and the structure around the catalytic site in Gag resemble those of guanylyltransferase, a key enzyme of cellular mRNA capping, suggesting convergent evolution. Given that Pol of L-A is confined inside the virion and unable to access host mRNA in the cytoplasm, the structural protein Gag rather than Pol catalyzing this unique cap-snatching reaction exemplifies the versatility as well as the adaptability of eukaryotic RNA viruses.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic mRNA bears a cap structure (m(7)GpppX-) at the 5' terminus crucial for efficient translation and stability. The yeast L-A double-stranded RNA virus furnishes its mRNA with this structure by a novel cap-snatching mechanism in which the virus transfers an m(7)Gp moiety from host mRNA to the diphosphorylated 5' terminus of the viral transcript, thus forming on it an authentic cap structure (referred to as cap0) in the budding yeast. This capping reaction is essential for efficient viral expression. His-154 of the capsid protein Gag is involved in the cap transfer. Here we show that the virus can utilize an externally added viral transcript as acceptor in the capping reaction. The acceptor needs to be 5' diphosphorylated, consistent with the fact that the viral transcript bears diphosphate at the 5' terminus. A 5' triphosphorylated or monophosphorylated transcript does not function as acceptor. N7 methylation at the 5' cap guanine of mRNA is essential for cap donor activity. We also demonstrate that the capping reaction requires the viral polymerase actively engaging in transcription. Because the cap-snatching site of Gag is located at the cytoplasmic surface of the virion, whereas Pol is confined inside the virion, the result indicates coordination between the cap-snatching and polymerization sites. This will allow L-A virus to efficiently produce capsid proteins to form new virions when Pol is actively engaging in transcription. The coordination may also minimize the risk of accidental capping of nonviral RNA when Pol is dormant.
    Journal of Biological Chemistry 02/2012; 287(16):12797-804. DOI:10.1074/jbc.M111.327676 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cellular mRNA decay machinery plays a major role in regulating the quality and quantity of gene expression in cells. This machinery involves multiple enzymes and pathways that converge to promote the exonucleolytic decay of mRNAs. The transcripts made by RNA viruses are susceptible to degradation by this machinery and, in fact, can be actively targeted. Thus, to maintain gene expression and replication, RNA viruses have evolved a number of strategies to avoid and/or inactivate aspects of the cellular mRNA decay machinery. Recent work uncovering the mechanisms used by RNA viruses to maintain the stability of their transcripts is described below.
    Current opinion in microbiology 05/2012; 15(4):500-5. DOI:10.1016/j.mib.2012.04.009 · 7.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The RNA-dependent RNA polymerase L protein of vesicular stomatitis virus (VSV), a prototypic nonsegmented negative strand (NNS) RNA virus classified into the Rhabdoviridae family, has been used to investigate the fundamental molecular mechanisms of NNS RNA viral mRNA synthesis and processing. In vitro studies on mRNA cap formation with the VSV L protein eventually led to the discovery of the unconventional mRNA capping pathway catalyzed by the guanosine 5'-triphosphatase and RNA:GDP polyribonucleotidyltransferase (PRNTase) activities. The PRNTase activity is a novel enzymatic activity, which transfers 5'-monophosphorylated (p-) RNA from 5'-triphosphorylated (ppp-) RNA to GDP to form 5'-capped RNA (GpppRNA) in a viral mRNA-start sequence-dependent manner. This unconventional capping (pRNA transfer) reaction with PRNTase can be experimentally distinguished from the conventional capping (GMP transfer) reaction with eukaryotic GTP:RNA guanylyltransferase (GTase) on the basis of the following differences in their substrate specificity for the cap formation: PRNTase uses GDP and pppRNA, but not ppRNA, whereas GTase employs GTP, but not GDP, and ppRNA. The pRNA transfer reaction with PRNTase proceeds through a covalent enzyme-pRNA intermediate with a phosphoamide bond. Hence, to prove the PRNTase activity, it is necessary to demonstrate the following consecutive steps separately: (1) the enzyme forms a covalent enzyme-pRNA intermediate, and (2) the intermediate transfers pRNA to GDP. This article describes the methods for in vitro transcription and capping with the recombinant VSV L protein, which permit detailed characterization of its enzymatic reactions and mapping of active sites of its enzymatic domains. It is expected that these systems are adaptable to rhabdoviruses and, by extension, other NNS RNA viruses belonging to different families.
    Methods 06/2012; DOI:10.1016/j.ymeth.2012.05.013 · 3.22 Impact Factor


1 Download
Available from