Article

Targets of the tumor suppressor miR-200 in regulation of the epithelial-mesenchymal transition in cancer.

Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
Cancer Research (Impact Factor: 9.28). 12/2011; 71(24):7670-82. DOI: 10.1158/0008-5472.CAN-11-0964
Source: PubMed

ABSTRACT The microRNA-200 (miR-200) family restricts epithelial-mesenchymal transition (EMT) and metastasis in tumor cell lines derived from mice that develop metastatic lung adenocarcinoma. To determine the mechanisms responsible for EMT and metastasis regulated by this microRNA, we conducted a global liquid chromatography/tandem mass spectrometry analysis to compare metastatic and nonmetastatic murine lung adenocarcinoma cells which had undergone EMT because of loss of miR-200. An analysis of syngeneic tumors generated by these cells identified multiple novel proteins linked to metastasis. In particular, the analysis of conditioned media, cell surface proteins, and whole-cell lysates from metastatic and nonmetastatic cells revealed large-scale modifications in the tumor microenvironment. Specific increases were documented in extracellular matrix (ECM) proteins, peptidases, and changes in distribution of cell adhesion proteins in the metastatic cell lines. Integrating proteomic data from three subproteomes, we defined constituents of a multilayer protein network that both regulated and mediated the effects of TGFβ. Lastly, we identified ECM proteins and peptidases that were directly regulated by miR-200. Taken together, our results reveal how expression of miR-200 alters the tumor microenvironment to inhibit the processes of EMT and metastasis.

0 Bookmarks
 · 
160 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Each year about 1.4 million people die from lung cancer worldwide. Despite efforts in prevention, diagnosis and treatment, survival rate remains poor for this disease. This unfortunate situation is largely due to the fact that a high proportion of cases are diagnosed at advanced stages, highlighting the great need for identifying new biomarkers in order to improve early diagnosis and treatment. Recent studies on microRNAs have not only shed light on their involvement in tumor development and progression, but also suggested their potential utility as biomarkers for subtype diagnostics, staging and prediction of treatment response. This review article summarizes the impact of microRNAs on lung cancer biology, and highlights their role in the detection and classification of lung cancer as well as direct targets for drug development.
    Metabolomics : open access. 03/2012; 2(3):1000108.
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are a family of short ribonucleic acids found to play a pivotal role in cancer pathogenesis. MiRNAs are crucial in cellular differentiation, growth, stress response, cell death and other fundamental cellular processes, and their involvement in ovarian cancer has been recently shown. They can repress the expression of important cancer-related genes and they can also function both as oncogenes and tumour suppressor genes. During epithelial-mesenchymal transition (EMT), epithelial cells lose their cell polarity and cell-cell adhesion and gain migratory and invasive properties. In the ovarian surface epithelium, EMT is considered the key regulator of the post-ovulatory repair process and it can be triggered by a range of environmental stimuli. The aberrant expression of the miR-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) in ovarian carcinoma and its involvement in ovarian cancer initiation and progression has been well-demonstrated. The miR-200 family members seem to be strongly associated with a pathologic EMT and to have a metastasis suppressive role. MiRNA signatures can accurately distinguish ovarian cancer from the normal ovary and can be used as diagnostic tools to predict the clinical response to chemotherapy. Recent evidence suggests a growing list of new miRNAs (miR-187, miR-34a, miR-506, miRNA-138, miR-30c, miR-30d, miR-30e-3p, miR-370 and miR-106a, among others) that are also implicated in ovarian carcinoma-associated EMT, either enhancing or suppressing it. MiRNA-based gene therapy provides a prospective anti-tumour approach for integrated cancer therapy. The aim of nanotechnology-based delivery approach for miRNA therapy is to overcome challenges in miRNA delivery and to effectively encourage the reprogramming of miRNA networks in cancer cells, which may lead to a clinically translatable miRNA-based therapy to benefit ovarian cancer patients.
    Cancer letters. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oligometastasis is a cancer disease state characterized by a limited number of metastatic tumors involving single or few organs and with biological properties that make them potentially amenable to locoregional antitumor therapy. Current clinical data show that they are potentially curable with surgical resection or/and radiotherapy. Yet, mechanisms of progression from primary tumor to oligometastasis, rather than to polymetastases, is lacking in detail. In the current review we focus on the role of micro-RNAs in the regulation of metastases development and the role they may play in the differentiation of oligometastatic from polymetastatic progression. We also discuss the analyses of metastatic samples from oligo-and polymetastatic patients, which suggest that oligometastasis is a distinct biologic entity regulated in part by micro-RNAs. In addition, a review of the known functions of oligometastatic-specific micro-RNAs suggest that they regulate multiple steps in the metastatic cascade, including epithelial-mesenchymal transition, tumor invasion, intravasation, distant vascular extravasation and proliferation in a distant organ. Understanding the role of micro-RNAs and their target genes in oligometastatic disease may allow for the development of targeted therapies to effectively conrol the spread of metastases.
    Clinical & experimental metastasis. 06/2014;

Full-text (2 Sources)

Download
39 Downloads
Available from
May 26, 2014