Targets of the Tumor Suppressor miR-200 in Regulation of the Epithelial-Mesenchymal Transition in Cancer

Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
Cancer Research (Impact Factor: 9.28). 12/2011; 71(24):7670-82. DOI: 10.1158/0008-5472.CAN-11-0964
Source: PubMed

ABSTRACT The microRNA-200 (miR-200) family restricts epithelial-mesenchymal transition (EMT) and metastasis in tumor cell lines derived from mice that develop metastatic lung adenocarcinoma. To determine the mechanisms responsible for EMT and metastasis regulated by this microRNA, we conducted a global liquid chromatography/tandem mass spectrometry analysis to compare metastatic and nonmetastatic murine lung adenocarcinoma cells which had undergone EMT because of loss of miR-200. An analysis of syngeneic tumors generated by these cells identified multiple novel proteins linked to metastasis. In particular, the analysis of conditioned media, cell surface proteins, and whole-cell lysates from metastatic and nonmetastatic cells revealed large-scale modifications in the tumor microenvironment. Specific increases were documented in extracellular matrix (ECM) proteins, peptidases, and changes in distribution of cell adhesion proteins in the metastatic cell lines. Integrating proteomic data from three subproteomes, we defined constituents of a multilayer protein network that both regulated and mediated the effects of TGFβ. Lastly, we identified ECM proteins and peptidases that were directly regulated by miR-200. Taken together, our results reveal how expression of miR-200 alters the tumor microenvironment to inhibit the processes of EMT and metastasis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that various neural and embryonic stem cells cultured in 1-8% oxygen (O(2)), levels lower than those typically used in cell culture (20.9%), displayed increased rates of proliferation; however, the molecular mechanisms underlying these changes are largely undefined. In this study, using rigorously controlled O(2) levels, we found that neural stem cells (NSCs) from embryonic day 15 rat cortex increased their rate of proliferation and migration in 1% O(2) relative to 20% O(2) without changes in viability. We sought to identify molecular changes in NSCs grown in 1% O(2) that might account for these increases. In 1% O(2), levels of the hypoxia-inducible transcription factor HIF-1α were transiently increased. Reduced adherence of NSCs in 1% O(2) to basement membrane-coated plates was observed, and quantitative RT-PCR analysis confirmed that the levels of mRNA for an assortment of cell adhesion and extracellular matrix molecules were altered. Most notable was a 5-fold increase in matrix metalloproteinase (MMP)-9 mRNA. Specific inhibition of MMP-9 activity, verified using a fluorescent substrate assay, prevented the increase in proliferation and migration in 1% O(2). The canonical Wnt pathway was recently shown to be activated in stem cells in low O(2) via HIF-1α. Inhibition of Wnt signaling by DKK-1 also prevented the increase in proliferation, migration, and MMP-9 expression. Thus, MMP-9 is a key molecular effector, downstream of HIF-1α and Wnt activation, responsible for increased rates of NSC proliferation and migration in 1% O(2).
    Journal of Biological Chemistry 04/2011; 286(20):17649-57. DOI:10.1074/jbc.M111.229427 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this article, I discuss the hallmarks of hypoxia in vitro and in vivo and review work showing that many types of stem cell proliferate more robustly in lowered oxygen. I then discuss recent studies showing that alterations in the levels and the types of cell and substrate adhesion molecules are a notable response to reduced O(2) levels in both cultured primary neural stem cells and brain tissues in response to hypoxia in vivo. The ability of O(2) levels to regulate adhesion molecule expression is linked to the Wnt signaling pathway, which can control and be controlled by adhesion events. The ability of O(2) levels to influence cell adhesion also has far-reaching implications for development, ischemic trauma and neural regeneration, as well as for cancer and other diseases. Finally I discuss the possibility that the fluctuations in O(2) levels known to have occurred over evolutionary time could, by influencing adhesion systems, have contributed to early symbiotic events in unicellular organisms and to the emergence of multicellularity. It is not my intention to be exhaustive in these domains, which are far from my own field of study. Rather this article is meant to provoke and stimulate thinking about molecular evolution involving O(2) sensing and signaling during eras of geologic and atmospheric change that might inform modern studies on development and disease.
    Cell adhesion & migration 01/2012; 6(1):49-58. DOI:10.4161/cam.19582 · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Each year about 1.4 million people die from lung cancer worldwide. Despite efforts in prevention, diagnosis and treatment, survival rate remains poor for this disease. This unfortunate situation is largely due to the fact that a high proportion of cases are diagnosed at advanced stages, highlighting the great need for identifying new biomarkers in order to improve early diagnosis and treatment. Recent studies on microRNAs have not only shed light on their involvement in tumor development and progression, but also suggested their potential utility as biomarkers for subtype diagnostics, staging and prediction of treatment response. This review article summarizes the impact of microRNAs on lung cancer biology, and highlights their role in the detection and classification of lung cancer as well as direct targets for drug development.
    03/2012; 2(3):1000108. DOI:10.4172/2153-0769.1000108