Article

Lack of Maternal Folic Acid Supplementation Is Associated with Heart Defects in Down Syndrome: A Report from the National Down Syndrome Project

Department of Human Genetics, Emory University, Atlanta, Georgia, USA.
Birth Defects Research Part A Clinical and Molecular Teratology (Impact Factor: 2.21). 10/2011; 91(10):885-93. DOI: 10.1002/bdra.22848
Source: PubMed

ABSTRACT Maternal folic acid supplementation has been associated with a reduced risk for neural tube defects and may be associated with a reduced risk for congenital heart defects and other birth defects. Individuals with Down syndrome are at high risk for congenital heart defects and have been shown to have abnormal folate metabolism.
As part of the population-based case-control National Down Syndrome Project, 1011 mothers of infants with Down syndrome reported their use of supplements containing folic acid. These data were used to determine whether a lack of periconceptional maternal folic acid supplementation is associated with congenital heart defects in Down syndrome. We used logistic regression to test the relationship between maternal folic acid supplementation and the frequency of specific heart defects correcting for maternal race or ethnicity, proband sex, maternal use of alcohol and cigarettes, and maternal age at conception.
Lack of maternal folic acid supplementation was more frequent among infants with Down syndrome and atrioventricular septal defects (odds ratio [OR], 1.69; 95% confidence interval [CI], 1.08-2.63; p = 0.011) or atrial septal defects (OR, 1.69; 95% CI, 1.11-2.58; p = 0.007) than among infants with Down syndrome and no heart defect. Preliminary evidence suggests that the patterns of association differ by race or ethnicity and sex of the proband. There was no statistically significant association with ventricular septal defects (OR, 1.26; 95% CI, 0.85-1.87; p = 0.124).
Our results suggest that lack of maternal folic acid supplementation is associated with septal defects in infants with Down syndrome. Birth Defects Research (Part A), 2011. © 2011 Wiley-Liss, Inc.

Download full-text

Full-text

Available from: Stuart Tinker, Sep 02, 2015
0 Followers
 · 
257 Views
 · 
92 Downloads
  • Source
    • "Thus, the dysregulation of pathways involved in heart development may cause the cardiac defects observed in DS. A second hypothesis implicating both environmental and genetic factors in DS phenotypes is supported by epidemiological studies of DS: specific cardiac defects were associated with smoking mothers (AVSD, TOF) [17], [18], folate pathways and folate supplementation have been proposed to interfere with the incidence of AVSD [19], [20], and an association between DS and CHD with global hypomethylation status has been found in a Dutch population-based case-control study [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Forty percent of people with Down syndrome exhibit heart defects, most often an atrioventricular septal defect (AVSD) and less frequently a ventricular septal defect (VSD) or atrial septal defect (ASD). Lymphoblastoid cell lines (LCLs) were established from lymphocytes of individuals with trisomy 21, the chromosomal abnormality causing Down syndrome. Gene expression profiles generated from DNA microarrays of LCLs from individuals without heart defects (CHD(-); n = 22) were compared with those of LCLs from patients with cardiac malformations (CHD(+); n = 21). After quantile normalization, principal component analysis revealed that AVSD carriers could be distinguished from a combined group of ASD or VSD (ASD+VSD) carriers. From 9,758 expressed genes, we identified 889 and 1,016 genes differentially expressed between CHD(-) and AVSD and CHD(-) and ASD+VSD, respectively, with only 119 genes in common. A specific chromosomal enrichment was found in each group of affected genes. Among the differentially expressed genes, more than 65% are expressed in human or mouse fetal heart tissues (GEO dataset). Additional LCLs from new groups of AVSD and ASD+VSD patients were analyzed by quantitative PCR; observed expression ratios were similar to microarray results. Analysis of GO categories revealed enrichment of genes from pathways regulating clathrin-mediated endocytosis in patients with AVSD and of genes involved in semaphorin-plexin-driven cardiogenesis and the formation of cytoplasmic microtubules in patients with ASD-VSD. A pathway-oriented search revealed enrichment in the ciliome for both groups and a specific enrichment in Hedgehog and Jak-stat pathways among ASD+VSD patients. These genes or related pathways are therefore potentially involved in normal cardiogenesis as well as in cardiac malformations observed in individuals with trisomy 21.
    PLoS ONE 08/2012; 7(8):e41616. DOI:10.1371/journal.pone.0041616 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Down syndrome (DS) is the most common genetic cause of mental retardation. Clinical manifestations are variable, and children have psychomotor impairment, multiple malformations, and medical conditions. Confirmation of the diagnosis is by karyotype analysis. The cytogenetic abnormality can be classified into pure trisomy 21, translocation, or mosaicism. Risk of recurrence depends on the primary cytogenetic abnormality in the proband. Prenatal screening is by biochemical and ultrasound markers in the first and second trimester. Definitive prenatal diagnosis is by analysis of fetal chromosomes in fetal chorionic villi, amniocytes, or cord blood. A noninvasive test for trisomy 21 in maternal blood has been developed by massively parallel shotgun sequencing. Therapeutic studies in Ts65Dn mice suggest an exciting prospect of improvement of learning ability and memory deficits.
    Clinics in laboratory medicine 06/2012; 32(2):231-48. DOI:10.1016/j.cll.2012.04.010 · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: STUDY QUESTION: Are DNMT3B promoter polymorphisms among maternal risk factors for the birth of a child with Down syndrome (DS)? SUMMARY ANSWER: Present results suggest that combinations of functional DNMT3B promoter polymorphisms might modulate maternal risk of birth of a child with DS. WHAT IS KNOWN ALREADY: The DNMT3B gene codes for DNA methyltransferase 3b (DNMT3b), a protein required for genome-wide de novo methylation, for the establishment of DNA methylation patterns during development and for regulating the histone code and DNA methylation at centromeric regions. Two common functional DNMT3B promoter polymorphisms, namely -149 C > T (rs2424913) and -579 G > T (rs1569686), have been extensively investigated in cancer genetic association studies but less is known about their role in non-cancer diseases. Early in 1999, it was supposed that impaired DNA methylation of pericentromeric regions might represent a maternal risk factor for having a baby with DS. STUDY DESIGN, SIZE AND DURATION: We aimed to investigate DNMT3B -149 C > T and -579 G > T polymorphisms as maternal risk factors for the birth of a child with DS. The study was performed on DNA samples from 172 mothers of DS individuals (135 aged <35 years when they conceived) and 157 age-matched mothers of unaffected individuals. PARTICIPANTS/MATERIALS, SETTING AND METHODS: Genotyping was performed by means of the PCR-RFLP technique. MAIN RESULTS AND THE ROLE OF CHANCE: The DNMT3B -579T allele [odds ratio (OR) = 0.68; 95% confidence interval (CI) = 0.48-0.94, P = 0.02], the DNMT3B -579 GT genotype (OR = 0.55; 95% CI = 0.35-0.87 , P = 0.01) and the combined DNMT3B -579 GT + TT genotype (OR = 0.55; 95% CI = 0.36-0.86 , P = 0.008) were associated with reduced risk of birth of a child with DS. A joint effect of the two polymorphisms was observed and the combined -579 GT/-149 CC genotype resulted in decreased DS risk (OR = 0.22; 95% CI = 0.08-0.64, P = 0.003). The effect remained statistically significant after Bonferroni's correction for multiple comparisons. Similar results were obtained when the analysis was restricted to women who conceived a DS child before 35 years of age. LIMITATIONS AND REASONS FOR CAUTION: To the best of our knowledge, this is the first genetic association study aimed at evaluating DNMT3B polymorphisms as maternal risk factors for DS. Replication of the findings in other populations is required. WIDER IMPLICATIONS OF THE FINDINGS: If confirmed in subsequent studies, DNMT3B promoter polymorphisms might be additional markers to be taken into account when evaluating the contribution of one-carbon (folate) metabolism to the maternal risk of birth of a child with DS. STUDY FUNDING/COMPETING INTEREST(S): None of the authors has any competing interest. This work was partially supported by the Italian Ministry of Health and '5 per mille' funding.
    Human Reproduction 10/2012; 28(2). DOI:10.1093/humrep/des376 · 4.59 Impact Factor
Show more