Formaldehyde exposure and asthma in children: a systematic review.

Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Ciencia & saude coletiva 09/2011; 16(9):3845-52. DOI: 10.1590/S1413-81232011001000020
Source: PubMed

ABSTRACT Despite multiple published studies regarding the association between formaldehyde exposure and childhood asthma, a consistent association has not been identified. Here we report the results of a systematic review of published literature in order to provide a more comprehensive picture of this relationship. After a literature search, we identified seven studies providing quantitative results regarding the association between formaldehyde exposure and asthma in children. Studies were heterogeneous with respect to the definition of asthma. For each study, an odds ratio (OR) and 95% confidence interval (CI) for asthma were abstracted from published results or calculated based on the data provided. We used fixed- and random-effects models to calculate pooled ORs and 95% CIs; measures of heterogeneity were also calculated. A fixed-effects model produced an OR of 1.03 (95% CI, 1.021.04), and random effects model produced an OR of 1.17 (95% CI, 1.011.36), both reflecting an increase of 10 mg/m3 of formaldehyde. Both the Q and I2 statistics indicated a moderate amount of heterogeneity. Results indicate a positive association between formaldehyde exposure and childhood asthma. Given the largely cross-sectional nature of the studies underlying this meta-analysis, further well-designed prospective epidemiologic studies are needed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Childhood asthma is a complex condition where many environmental factors are implicated in causation. The aim of this study was to complete a systematic review of the literature describing associations between environmental exposures and the development of asthma in young children. A systematic review of the literature up to November 2013 was conducted using key words agreed by the research team. Abstracts were screened and potentially eligible papers reviewed. Papers describing associations between exposures and exacerbation of pre-existing asthma were not included. Papers were placed into the following predefined categories: secondhand smoke (SHS), inhaled chemicals, damp housing/mould, inhaled allergens, air pollution, domestic combustion, dietary exposures, respiratory virus infection and medications. Children aged up to 9 years. Diagnosed asthma and wheeze. 14 691 abstracts were identified, 207 papers reviewed and 135 included in the present review of which 15 were systematic reviews, 6 were meta-analyses and 14 were intervention studies. There was consistent evidence linking exposures to SHS, inhaled chemicals, mould, ambient air pollutants, some deficiencies in maternal diet and respiratory viruses to an increased risk for asthma (OR typically increased by 1.5-2.0). There was less consistent evidence linking exposures to pets, breast feeding and infant dietary exposures to asthma risk, and although there were consistent associations between exposures to antibiotics and paracetamol in early life, these associations might reflect reverse causation. There was good evidence that exposures to house dust mites (in isolation) was not associated with asthma risk. Evidence from observational and intervention studies suggest that interactions between exposures were important to asthma causation, where the effect size was typically 1.5-3.0. There are many publications reporting associations between environmental exposures and modest changes in risk for asthma in young children, and this review highlights the complex interactions between exposures that further increase risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to
    BMJ Open 11/2014; 4(11):e006554. · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Horizontal drilling, hydraulic fracturing, and other drilling and well stimulation technologies are now used widely in the United States and increasingly in other countries. They enable increases in oil and gas production, but there has been inadequate attention to human health impacts. Air quality near oil and gas operations is an underexplored human health concern for five reasons: (1) prior focus on threats to water quality; (2) an evolving understanding of contributions of certain oil and gas production processes to air quality; (3) limited state air quality monitoring networks; (4) significant variability in air emissions and concentrations; and (5) air quality research that misses impacts important to residents. Preliminary research suggests that volatile compounds, including hazardous air pollutants, are of potential concern. This study differs from prior research in its use of a community-based process to identify sampling locations. Through this approach, we determine concentrations of volatile compounds in air near operations that reflect community concerns and point to the need for more fine-grained and frequent monitoring at points along the production life cycle. Methods: Grab and passive air samples were collected by trained volunteers at locations identified through systematic observation of industrial operations and air impacts over the course of resident daily routines. A total of 75 volatile organics were measured using EPA Method TO-15 or TO-3 by gas chromatography/mass spectrometry. Formaldehyde levels were determined using UMEx 100 Passive Samplers. Results: Levels of eight volatile chemicals exceeded federal guidelines under several operational circumstances. Benzene, formaldehyde, and hydrogen sulfide were the most common compounds to exceed acute and other health-based risk levels. Conclusions: Air concentrations of potentially dangerous compounds and chemical mixtures are frequently present near oil and gas production sites. Community-based research can provide an important supplement to state air quality monitoring programs.
    Environmental Health 01/2014; 13:82. · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exposures to a wide spectrum of air pollutants were associated to several effects on children's health. Exposure assessment can be used to establish where and how air pollutants' exposures occur. However, a realistic estimation of children's exposures to air pollution is usually a great ethics challenge, especially for young children, because they cannot intentionally be exposed to contaminants and according to Helsinki declaration, they are not old enough to make a decision on their participation. Additionally, using adult surrogates introduces bias, since time–space–activity patterns are different from those of children. From all the different available approaches for exposure assessment, the microenvironmental (ME) modelling (indirect approach, where personal exposures are estimated or predicted from microenvironment measurements combined with time–activity data) seemed to be the best to assess children's exposure to air pollution as it takes into account the varying levels of pollution to which an individual is exposed during the course of the day, it is faster and less expensive. Thus, this review aimed to explore the use of the ME modelling approach methodology to assess children's exposure to air pollution. To meet this goal, a total of 152 articles, published since 2002, were identified and titles and abstracts were scanned for relevance. After exclusions, 26 articles were fully reviewed and main characteristics were detailed, namely: (i) study design and outcomes, including location, study population, calendar time, pollutants analysed and purpose; and (ii) data collection, including time–activity patterns (methods of collection, record time and key elements) and pollution measurements (microenvironments, methods of collection and duration and time resolution). The reviewed studies were from different parts of the world, confirming the worldwide application, and mostly cross-sectional. Longitudinal studies were also found enhancing the applicability of this approach. The application of this methodology on children is different from that on adults because of data collection, namely the methods used for collecting time–activity patterns must be different and the time–activity patterns are itself different, which leads to select different microenvironments to the data collection of pollutants' concentrations. The most used methods to gather information on time–activity patterns were questionnaires and diaries, and the main microenvironments considered were home and school (indoors and outdoors). Although the ME modelling approach in studies to assess children’s exposure to air pollution is highly encouraged, a validation process is needed, due to the uncertainties associated with the application of this approach.
    Environmental Research 11/2014; 135. · 3.95 Impact Factor