Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: A systematic review and meta-analysis

Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology (Impact Factor: 3.1). 04/2012; 123(4):644-57. DOI: 10.1016/j.clinph.2011.08.029
Source: PubMed


The primary aim of this review is to evaluate the effects of anodal transcranial direct current stimulation (a-tDCS) on corticomotor excitability and motor function in healthy individuals and subjects with stroke. The secondary aim is to find a-tDCS optimal parameters for its maximal effects. Electronic databases were searched for studies into the effect of a-tDCS when compared to no stimulation. Studies which met the inclusion criteria were assessed and methodological quality was examined using PEDro and Downs and Black (D&B) assessment tools. Data from seven studies revealed increase in corticomotor excitability with a small but significant effect size (0.31 [0.14, 0.48], p=0.0003) in healthy subjects and data from two studies in subjects with stroke indicated significant results with moderate effect size (0.59 [0.24, 0.93], p=0.001) in favor of a-tDCS. Likewise, studies examining motor function demonstrated a small and non-significant effect (0.39 [-0.17, 0.94], p=0.17) in subjects with stroke and a large but non-significant effect (0.92 [-1.02, 2.87], p=0.35) in healthy subjects in favor of improvement in motor function. The results also indicate that efficacy of a-tDCS is dependent on current density and duration of application. A-tDCS increases corticomotor excitability in both healthy individuals and subjects with stroke. The results also show a trend in favor of motor function improvement following a-tDCS. A-tDCS is a non-invasive, cheap and easy-to-apply modality which could be used as a stand-alone technique or as an adds-on technique to enhance corticomotor excitability and the efficacy of motor training approaches. However, the small sample size of the included studies reduces the strength of the presented evidences and any conclusion in this regard should be considered cautiously.

Download full-text


Available from: Andisheh Bastani, Jun 15, 2014
  • Source
    • "In such case, anodal tDCS applied over the ipsilateral motor cortex could be an interesting strategy to optimize muscle performance in healthy subjects, as previously demonstrated (Boggio et al., 2006b). Another possible strategy to optimize the leg muscle performance would be to amplify the electrical current density (μA/cm 3 ) under the active electrodes (McCreery, Agnew, Yuen, & Bullara, 1990) or to increase the duration of tDCS stimulus, in order to promote more effective changes in the corticomotor excitation, responsible to recruit motor units of major muscles groups in the lower limbs (Bastani & Jaberzadeh, 2012). Finally, the anodal tDCS could be applied during (and not prior to) the exercise performed until fatigue, since there is preliminary evidence demonstrating that anodal tDCS would be effective to bolster the capacity to exercise under such conditions (Williams et al., 2013). "

    Isokinetics and exercise science 09/2015; .(.):.. · 0.49 Impact Factor
  • Source
    • "of stimulation [28] [29]. When applied to the motor cortex, which is accompanied by the contraction of muscles, TMS can alter the heart rate variability (HRV) due to connections between the brain cortex and the autonomic centers [30] [31]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Several standard protocols based on repetitive transcranial magnetic stimulation (rTMS) have been employed for treatment of a variety of neurological disorders. Despite their advantages in patients that are retractable to medication, there is a lack of knowledge about the effects of rTMS on the autonomic nervous system that controls the cardiovascular system. Current understanding suggests that the shape of the so-called QRS complex together with the size of the different segments and intervals between the PQRST deflections of the heart could predict the nature of the different arrhythmias and ailments affecting the heart. This preliminary study involving 10 normal subjects from 20 to 30 years of age demonstrated that rTMS can induce changes in the heart rhythm. The autonomic activity that controls the cardiac rhythm was indeed altered by an rTMS session targeting the motor cortex using intensity below the subject's motor threshold and lasting no more than 5 minutes. The rTMS activation resulted in a reduction of the RR intervals (cardioacceleration) in most cases. Most of these cases also showed significant changes in the Poincare plot descriptor SD2 (long-term variability), the area under the low frequency (LF) power spectrum density curve, and the low frequency to high frequency (LF/HF) ratio. The RR intervals changed significantly in specific instants of time during rTMS activation showing either heart rate acceleration or heart rate deceleration.
    07/2014; 2014:349718. DOI:10.1155/2014/349718
  • Source
    • "Even if a certain degree of clinical improvements of motor performances is achieved after tDCS in patients with stroke, very low quality evidence has been demonstrated. In fact, as the principal reviews and meta-analyses have highlighted, there are a wide variability of the patients enrolled into the studies and a disparate use of stimulation parameters, limiting the conclusions on the topic at the moment [17] [18] [19]. Nevertheless, tDCS might be an emerging tool enhancing the outcomes of rehabilitation, favoring the neuroplasticity of the brain. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcranial direct current stimulation (tDCS) is a noninvasive technique that could improve the rehabilitation outcomes in stroke, eliciting neuroplastic mechanisms. At the same time conflicting results have been reported in subacute phase of stroke, when neuroplasticity is crucial. The aim of this double-blind, randomized, and sham-controlled study was to determine whether a treatment with cathodal tDCS before the rehabilitative training might augment the final outcomes (upper limb function, hand dexterity and manual force, locomotion, and activities of daily living) in respect of a traditional rehabilitation for a sample of patients affected by ischemic stroke in the subacute phase. An experimental group (cathodal tDCS plus rehabilitation) and a control group (sham tDCS plus rehabilitation) were assessed at the beginning of the protocol, after 10 days of stimulation, after 30 days from ending of stimulation, and at the end of inpatient rehabilitation. Both groups showed significant improvements for all the assessed domains during the rehabilitation, except for the manual force, while no significant differences were demonstrated between groups. These results seem to indicate that the cathodal tDCS, provided in an early phase of stroke, does not lead to a functional improvement. To depict a more comprehensive scenario, further studies are needed.
    BioMed Research International 05/2014; 2014(12):547290. DOI:10.1155/2014/547290 · 1.58 Impact Factor
Show more