Article

New prodrugs of the antiprotozoal drug pentamidine.

Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76-78, 24118 Kiel, Germany.
ChemMedChem (Impact Factor: 3.05). 12/2011; 6(12):2233-42. DOI: 10.1002/cmdc.201100422
Source: PubMed

ABSTRACT Pentamidine is an effective antimicrobial agent that is approved for the treatment of African trypanosomiasis but suffers from poor oral bioavailability and central nervous system (CNS) penetration. This work deals with the development and systematic characterisation of new prodrugs of pentamidine. For this reason, numerous prodrugs that use different prodrug principles were synthesised and examined in vitro and in vivo. Another objective of the study was the determination of permeability of the different pentamidine prodrugs. While some of the prodrug principles applied in this study are known, such as the conversion of the amidine functions into amidoximes or the O-alkylation of amidoximes with a carboxymethyl residue, others were developed more recently and are described here for the first time. These newly developed methods aim to increase the affinity of the prodrug for the transporters and mediate an active uptake via carrier systems by conjugation of amidoximes with compounds that improve the overall solubility of the prodrug. The different principles chosen resulted in several pentamidine prodrugs with various advantages. The objective of this investigation was the systematic characterisation and evaluation of eight pentamidine prodrugs in order to identify the most appropriate strategy to improve the properties of the parent drug. For this reason, all prodrugs were examined with respect to their solubility, stability, enzymatic activation, distribution, CNS delivery, and oral bioavailability. The results of this work have allowed reliable conclusions to be drawn regarding the best prodrug principle for the antiprotozoal drug pentamidine.

0 Bookmarks
 · 
245 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human African trypanosomiasis (HAT or sleeping sickness) is a potentially fatal disease caused by the parasite, Trypanosoma brucei sp. The parasites are transmitted by the bite of insect vectors belonging to the genus Glossina (tsetse flies) and display a life cycle strategy that is equally spread between human and insect hosts. T.b. gambiense is found in western and central Africa whereas, T.b. rhodesiense is found in eastern and southern Africa. The disease has two clinical stages: a blood stage after the bite of an infected tsetse fly, followed by a central nervous system (CNS) stage where the parasite penetrates the brain; causing death if left untreated. The blood-brain barrier (BBB) makes the CNS stage difficult to treat because it prevents 98% of all known compounds from entering the brain, including some anti-HAT drugs. Those that do enter the brain are toxic compounds in their own right and have serious side effects. There are only a few drugs available to treat HAT and those that do are stage specific. This review summarizes the incidence, diagnosis, and treatment of HAT and provides a close examination of the BBB transport of anti-HAT drugs and an overview of the latest drugs in development.
    Advances in pharmacology (San Diego, Calif.) 01/2014; 71C:245-275. DOI:10.1016/bs.apha.2014.06.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pentamidine is an effective antiparasitic agent and approved drug for the treatment of African trypanosomiasis (sleeping sickness). However, pentamidine suffers from poor orally bioavailability and lacks central nervous system (CNS) delivery. Therefore its applicability is limited to intravenous or intramuscular treatment of the first stage of the African trypanosomiasis. For this reason, several new pentamidine pro-drugs have been developed with the aim of providing improved orally availability and CNS penetration.
    International Journal of Pharmaceutics 12/2014; 477(1). DOI:10.1016/j.ijpharm.2014.10.032 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Parasitic protozoa comprise diverse aetiological agents responsible for important diseases in humans and animals including sleeping sickness, Chagas disease, leishmaniasis, malaria, toxoplasmosis and others. They are major causes of mortality and morbidity in tropical and subtropical countries, and are also responsible for important economic losses. However, up to now, for most of these parasitic diseases, effective vaccines are lacking and the approved chemotherapeutic compounds present high toxicity, increasing resistance, limited efficacy and require long periods of treatment. Many of these parasitic illnesses predominantly affect low-income populations of developing countries for which new pharmaceutical alternatives are urgently needed. Thus, very low research funding is available. Amidine-containing compounds such as pentamidine are DNA minor groove binders with a broad spectrum of activities against human and veterinary pathogens. Due to their promising microbicidal activity but their rather poor bioavailability and high toxicity, many analogues and derivatives, including pro-drugs, have been synthesized and screened in vitro and in vivo in order to improve their selectivity and pharmacological properties. This review summarizes the knowledge on amidines and analogues with respect to their synthesis, pharmacological profile, mechanistic and biological effects upon a range of intracellular protozoan parasites. The bulk of these data may contribute to the future design and structure optimization of new aromatic dicationic compounds as novel antiparasitic drug candidates.
    Parasitology 04/2013; DOI:10.1017/S0031182013000292 · 2.36 Impact Factor