Article

Tipifarnib-mediated suppression of T-bet-dependent signaling pathways.

Immunology Program, H. Lee Moffitt Cancer Center, SRB3, 12902 Magnolia Dr, Tampa, FL 33612, USA.
Cancer Immunology and Immunotherapy (Impact Factor: 3.94). 10/2011; 61(4):523-33. DOI: 10.1007/s00262-011-1109-0
Source: PubMed

ABSTRACT Large granular lymphocyte (LGL) leukemia is a chronic lymphoproliferative disease in which T-bet [T-box transcription factor 21 gene (tbx21)] overexpression may play a pathogenic role. T-bet orchestrates the differentiation of mature peripheral T-cells into interferon-γ (IFN-γ) and tumor necrosis factor-α producing CD4+ T-helper type I (Th1) and CD8+ T cytotoxic cells that are necessary for antiviral responses. When IL-12 is produced by antigen-presenting cells, T-bet expression is induced, causing direct stimulation of ifng gene transcription while simultaneously acting as a transcriptional repressor of the IL4 gene, which then leads to Th1 dominance and T-helper type 2 differentiation blockade. Additionally, T-bet has been shown to regulate histone acetylation of the ifng promoter and enhancer to loosen condensed DNA, creating greater accessibility for other transcription factor binding, which further amplifies IFNγ production. We found that treatment with a farnesyltransferase inhibitor tipifarnib reduced Th1 cytokines in LGL leukemia patient T-cells and blocked T-bet protein expression and IL-12 responsiveness in T-cells from healthy donors. The mechanism of suppression was based on modulation of histone acetylation of the ifng gene, which culminated in Th1 blockade.

0 Followers
 · 
208 Views
 · 
0 Downloads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several cytoplasmic proteins, such as GTPases of the Ras family, containing a C-terminal CAAX motif are prenylated by farnesyltransferase to facilitate localization to cellular membranes where activation occurs. Farnesyltransferase inhibitors (FTIs) interfere with this farnesylation process, thereby preventing proper membrane localization and rendering the proteins unavailable for activation. Currently, FTIs are being explored as antineoplastic agents for the treatment of several malignancies. However, since farnesylated proteins like Ras are also involved in intracellular signaling in lymphocytes, FTIs might interfere with T-cell activation. Based on this hypothesis we examined the effect of several FTIs on cytokine production in response to anti-CD3 + anti-CD28 monoclonal antibodies or PMA + ionomycin. Murine Th1 and Th2 clones, stimulated in the presence of FTIs, showed a dose-dependent reduction of lineage-specific cytokine secretion (IFN-gamma, IL-2, IL-4, IL-5). However, no inhibition of ERK or JNK MAP kinases was observed, nor was induction of cytokine mRNA affected. Rather, intracellular cytokine protein synthesis was blocked. Inhibition of human T-cell INF-gamma production also was observed, correlating with reduced phosphorylation of p70S6K. These results indicate that FTIs inhibit T-cell activation at the posttranscriptional level and also suggest that they may have potential as novel immunosuppressive agents.
    Blood 10/2007; 110(6):1982-8. DOI:10.1182/blood-2006-06-031088 · 10.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To better understand the control of T helper (TH) 1-expressed genes, we compared and contrasted acetylation and expression for three key genes, IFNG, TBET, and IL18RAP and found them to be distinctly regulated. The TBET and the IFNG genes, but not the IL18RAP gene, showed preferential acetylation of histones H3 and H4 during TH1 differentiation. Analysis of acetylation of specific histone residues revealed that H3(Lys-9), H4(Lys-8), and H4(Lys-12) were preferentially modified in TH1 cells, suggesting a possible contribution of acetylation of these residues for induction of these genes. On the other hand, the acetylation of IL18RAP gene occurred both in TH1 and TH2 cells the similar kinetics and on the same with residues, demonstrating that selective histone acetylation was not universally the case for all TH1-expressed genes. Histone H3 acetylation of IFNG and TBET genes occurred with different kinetics, however, and was distinctively regulated by cytokines. Interleukin (IL)-12 and IL-18 enhanced the histone acetylation of the IFNG gene. By contrast, histone acetylation of the TBET gene was markedly suppressed by IL-4, whereas IL-12 and IL-18 had only modest effects suggesting that histone acetylation during TH1 differentiation is a process that is regulated by various factors at multiple levels. By treating Th2 cells with a histone deacetylase inhibitor, we restored histone acetylation of the IFNG and TBET genes, but it did not fully restore their expression in TH2 cells, again suggesting that histone acetylation explains one but not all the aspects of TH1-specific gene expression.
    Journal of Biological Chemistry 10/2004; 279(39):40640-6. DOI:10.1074/jbc.M407576200 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism by which the geranylgeranyltransferase I inhibitor GGTI-298 and the farnesyltransferase inhibitor FTI-277 inhibit human tumor growth is not known. Herein, we demonstrate that in the human lung adenocarcinoma A549 cells, GGTI-298 induced a G1-G0 block whereas FTI-277 induced an enrichment in the G2-M phase of the cell cycle. Although FTI-277, GGTI-298, and compactin inhibited A549 cell growth, only GGTI-298 and compactin induced apoptosis as demonstrated by four criteria: 4',6-diamidine-2-phenylindoledihydrochloride staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, DNA fragmentation assay, and flow cytometry. Furthermore, the involvement of geranylgeranylated proteins in apoptotic pathways was confirmed by demonstrating that geranylgeraniol was able to block the ability of compactin to induce apoptosis. These results suggest that protein geranylgeranylation is critical for the control of programmed cell death and that, in A549 cells, farnesylated and geranylgeranylated proteins are involved in G2-M and G0-G1, respectively.
    Cancer Research 06/1997; 57(10):1846-50. · 9.28 Impact Factor
Show more