Article

Modulation of Gene Expression and Cell-Cycle Signaling Pathways by the EGFR Inhibitor Gefitinib (Iressa) in Rat Urinary Bladder Cancer

Department of Surgery and The Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, Missouri, USA.
Cancer Prevention Research (Impact Factor: 5.27). 02/2012; 5(2):248-59. DOI: 10.1158/1940-6207.CAPR-10-0363
Source: PubMed

ABSTRACT The epidermal growth factor receptor inhibitor Iressa has shown strong preventive efficacy in the N-butyl-N-(4-hydroxybutyl)-nitrosamine (OH-BBN) model of bladder cancer in the rat. To explore its antitumor mechanism, we implemented a systems biology approach to characterize gene expression and signaling pathways in rat urinary bladder cancers treated with Iressa. Eleven bladder tumors from control rats, seven tumors from rats treated with Iressa, and seven normal bladder epithelia were profiled by the Affymetrix Rat Exon 1.0 ST Arrays. We identified 713 downregulated and 641 upregulated genes in comparing bladder tumors versus normal bladder epithelia. In addition, 178 genes were downregulated and 96 genes were upregulated when comparing control tumors versus Iressa-treated tumors. Two coexpression modules that were significantly correlated with tumor status and treatment status were identified [r = 0.70, P = 2.80 × 10(-15) (bladder tumor vs. normal bladder epithelium) and r = 0.63, P = 2.00 × 10(-42) (Iressa-treated tumor vs. control tumor), respectively]. Both tumor module and treatment module were enriched for genes involved in cell-cycle processes. Twenty-four and twenty-one highly connected hub genes likely to be key drivers in cell cycle were identified in the tumor module and treatment module, respectively. Analysis of microRNA genes on the array chips showed that tumor module and treatment module were significantly associated with expression levels of let-7c (r = 0.54, P = 3.70 × 10(-8) and r = 0.73, P = 1.50 × 10(-65), respectively). These results suggest that let-7c downregulation and its regulated cell-cycle pathway may play an integral role in governing bladder tumor suppression or collaborative oncogenesis and that Iressa exhibits its preventive efficacy on bladder tumorigenesis by upregulating let-7 and inhibiting the cell cycle. Cell culture study confirmed that the increased expression of let-7c decreases Iressa-treated bladder tumor cell growth. The identified hub genes may also serve as pharmacodynamic or efficacy biomarkers in clinical trials of chemoprevention in human bladder cancer.

0 Followers
 · 
269 Views
  • Source
    • "Several micro- RNAs are known to target ERα in cell lines and tissues [66] and a reduction in their expression would be expected to increase the receptor's expression. Interestingly, expression of let-7c, a member of the let-7 microRNAs that target ERα [67], is decreased in bladder tumors arising in BBN-treated rats and postulated to play a significant role in oncogenesis [68]. Conversely, stabilization of ERα protein, potentially from a reduction in ubiquitin ligases (e.g., Mdm2) that target the receptor for degradation by the proteasome [69], could also contribute to increased protein expression in urothelium following carcinogen exposure. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bladder cancer is the fifth most frequent tumor in men and ninth in women in the United States. Due to a high likelihood of recurrence, effective chemoprevention is a significant unmet need. Estrogen receptors (ERs), primarily ERβ, are expressed in normal urothelium and urothelial carcinoma, and blocking ER function with selective ER modulators such as tamoxifen inhibits bladder cancer cell proliferation in vitro. Herein, the chemoprotective potential of tamoxifen was evaluated in female mice exposed to the bladder-specific carcinogen, N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Carcinogen treatment resulted in a 76% tumor incidence and increased mean bladder weights in comparison to controls. In contrast, mice receiving tamoxifen concurrent (8–20 weeks) or concurrent and subsequent (8–32 weeks) to BBN administration had no change in bladder weight and only 10% to 14% incidence of tumors. Non–muscle-invasive disease was present in animals treated with tamoxifen before (5–8 weeks) or after (20–32 weeks) BBN exposure, while incidence of muscle-invasive bladder carcinoma was reduced. ERβ was present in all mice and thus is a potential mediator of the tamoxifen chemoprotective effect. Surprisingly, ERα expression, which was detected in 74% of the mice exposed to BBN alone but not in any controlmice, was correlated with tumor incidence, indicating a possible role for this receptor in carcinogen-induced urothelial tumorigenesis. Thus, these data argue that both ERα and ERβ play a role in modulating carcinogen-induced bladder tumorigenesis. Administration of tamoxifen should be tested as a chemopreventive strategy for patients at high risk for bladder cancer recurrence.
    Translational oncology 06/2013; 6(6):244-255. DOI:10.1593/tlo.13247 · 3.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human head and neck squamous cell carcinoma (HNSCC) is a major cause of cancer-related death during the last decade due to its related metastasis and poor treatment outcomes. Gefitinib (Iressa), a tyrosine kinase inhibitor has been reported to reduce the metastatic abilities of oral cancer. Previous studies have shown that epigallocatechin gallate (EGCG), a green tea polyphenol, possesses cancer chemopreventive and anticancer activity. However, the mechanisms involved in the suppression of invasion and metastasis of human oral cancer cells following co-incubation with gefitinib and EGCG remain poorly understood. In the present study, we attempted to investigate the synergistic effects of a combined treatment of gefitinib and EGCG in CAL-27 cells in vitro and to elucidate the underlying molecular mechanisms associated with the supression of cell migration and invasion. In the present study, we found that the individual treatments or the combined treatment of gefitinib and EGCG synergistically inhibited the invasion and migration of CAL-27 cells using Transwell invasion and wound-healing scratch assays, respectively. Similarly, gefitinib in combination with EGCG synergistically attenuated enzymatic activity and the protein expression of MMP-2 in CAL-27 cells. Furthermore, individual or combined treatment with EGCG and gefitinib suppressed the protein expression of p-EGFR and the phosphorylated protein levels of ERK, JNK, p38 and AKT and displayed inhibitory effects on metastatic ability of CAL-27 cells. Combined effects of EGCG and gefitinib-altered anti-metastatic actions for related gene expression were observed using DNA microarray analysis. Importantly, EGCG sensitizes CAL-27 cells to gefitinib-suppressed phosphorylation of epidermal growth factor receptor (EGFR in vitro. Taken together, our results suggest that the synergistic suppression of the metastatic ability of CAL-27 cells after EGCG and gefitinib individual or combined treatment are mediated through mitogen-activated protein kinase (MAPK) signaling. Our novel findings provide potential insights into the mechanism involved with synergistic responses of gefitinib and EGCG against the progression of oral cancer.
    Oncology Reports 08/2012; 28(5):1799-807. DOI:10.3892/or.2012.1991 · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Agrimony is a traditional Chinese medicine and a herb of Agrimonia pilosa Ledeb belonging to the Rosaceae family. Many pharmacological effects of agrimony have been demonstrated in previous studies. Few studies have screened the active compounds in this complex product for chronic prostatitis. In this study, a two dimensional online method was established. A Sprague-Dawley (SD) rat prostate CMC-online-HPLC/MS method was used to screen, analyze, and identify active compounds acting on α1 adrenergic receptor from agrimony. Via this online method agrimonolide was screened, analyzed, and identified as the active compound acting on α1 adrenergic receptor. Thus, agrimonolide is a potential α1 adrenergic receptor antagonist and requires further study.
    Analytical methods 09/2012; 4(10):3351-3357. DOI:10.1039/C2AY25703C · 1.94 Impact Factor
Show more