Article

Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex

Janelia Farm Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA.
Neuron (Impact Factor: 15.98). 10/2011; 72(1):111-23. DOI: 10.1016/j.neuron.2011.07.029
Source: PubMed

ABSTRACT In the rodent vibrissal system, active sensation and sensorimotor integration are mediated in part by connections between barrel cortex and vibrissal motor cortex. Little is known about how these structures interact at the level of neurons. We used Channelrhodopsin-2 (ChR2) expression, combined with anterograde and retrograde labeling, to map connections between barrel cortex and pyramidal neurons in mouse motor cortex. Barrel cortex axons preferentially targeted upper layer (L2/3, L5A) neurons in motor cortex; input to neurons projecting back to barrel cortex was particularly strong. Barrel cortex input to deeper layers (L5B, L6) of motor cortex, including neurons projecting to the brainstem, was weak, despite pronounced geometric overlap of dendrites with axons from barrel cortex. Neurons in different layers received barrel cortex input within stereotyped dendritic domains. The cortico-cortical neurons in superficial layers of motor cortex thus couple motor and sensory signals and might mediate sensorimotor integration and motor learning.

Download full-text

Full-text

Available from: Tianyi Mao, Nov 20, 2014
3 Followers
 · 
179 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Moving and interacting with the world requires that the sensory and motor systems share information, but while some information about tactile events is preserved during sensorimotor transfer the spatial specificity of this information is unknown. Afferent inhibition (AI) studies, in which corticospinal excitability (CSE) is inhibited when a single tactile stimulus is presented before a transcranial magnetic stimulation pulse over the motor cortex, offer contradictory results regarding the sensory-to-motor transfer of spatial information. Here, we combined the techniques of AI and tactile repetition suppression (the decreased neurophysiological response following double stimulation of the same vs. different fingers) to investigate whether topographic information is preserved in the sensory-to-motor transfer in humans. We developed a double AI paradigm to examine both spatial (same vs. different finger) and temporal (short vs. long delay) aspects of sensorimotor interactions. Two consecutive electrocutaneous stimuli (separated by either 30 or 125 ms) were delivered to either the same or different fingers on the left hand (i.e. index finger stimulated twice or middle finger stimulated before index finger). Information about which fingers were stimulated was reflected in the size of the motor responses in a time-constrained manner: CSE was modulated differently by same and different finger stimulation only when the two stimuli were separated by the short delay (P = 0.004). We demonstrate that the well-known response of the somatosensory cortices following repetitive stimulation is mirrored in the motor cortex and that CSE is modulated as a function of the temporal and spatial relationship between afferent stimuli. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
    European Journal of Neuroscience 03/2015; 41(11). DOI:10.1111/ejn.12890 · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Motor cortex (M1) is classically considered an agranular area, lacking a distinct layer 4 (L4). Here, we tested the idea that M1, despite lacking a cytoarchitecturally visible L4, nevertheless possesses its equivalent in the form of excitatory neurons with input-output circuits like those of L4 neurons in sensory areas. Consistent with this idea, we found that neurons located in a thin laminar zone at the L3/5A border in the forelimb area of mouse M1 have multiple L4-like synaptic connections: excitatory input from thalamus, largely unidirectional excitatory outputs to L2/3 pyramidal neurons, and relatively weak long-range corticocortical inputs and outputs. M1-L4 neurons were electrophysiologically diverse but morphologically uniform, with pyramidal-type dendritic arbors and locally ramifying axons including branches extending into L2/3. Our findings therefore identify pyramidal neurons in M1 with the expected prototypical circuit properties of excitatory L4 neurons, and question the traditional assumption that motor cortex lacks this layer.
    eLife Sciences 12/2014; 3. DOI:10.7554/eLife.05422 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cortical information processing at the cellular level has predominantly been studied in local networks, which are dominated by strong vertical connectivity between layers. However, recent studies suggest that the bulk of axons targeting pyramidal neurons most likely originate from outside this local range, emphasizing the importance of horizontal connections. We mapped a subset of these connections to L5B pyramidal neurons in rat somatosensory cortex with photostimulation, identifying intact projections up to a lateral distance of 2 mm. Our estimates of the spatial distribution of cells presynaptic to L5B pyramids support the idea that the majority is located outside the local volume. The synaptic physiology of horizontal connections does not differ markedly from that of local connections, whereas the layer and cell-type-dependent pattern of innervation does. Apart from L2/3, L6A provides a strong source of horizontal connections. Implementing our data into a spiking neuronal network model shows that more horizontal connections promote robust asynchronous ongoing activity states and reduce noise correlations in stimulus-induced activity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
    Cerebral Cortex 11/2014; DOI:10.1093/cercor/bhu265 · 8.31 Impact Factor