Cytoplasmic Estrogen Receptor in Breast Cancer

Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
Clinical Cancer Research (Impact Factor: 8.72). 01/2012; 18(1):118-26. DOI: 10.1158/1078-0432.CCR-11-1236
Source: PubMed


In addition to genomic signaling, it is accepted that estrogen receptor-α (ERα) has nonnuclear signaling functions, which correlate with tamoxifen resistance in preclinical models. However, evidence for cytoplasmic ER localization in human breast tumors is less established. We sought to determine the presence and implications of nonnuclear ER in clinical specimens.
A panel of ERα-specific antibodies (SP1, MC20, F10, 60c, and 1D5) was validated by Western blot and quantitative immunofluorescent (QIF) analysis of cell lines and patient controls. Then eight retrospective cohorts collected on tissue microarrays were assessed for cytoplasmic ER. Four cohorts were from Yale (YTMA 49, 107, 130, and 128) and four others (NCI YTMA 99, South Swedish Breast Cancer Group SBII, NSABP B14, and a Vietnamese Cohort) from other sites around the world.
Four of the antibodies specifically recognized ER by Western and QIF analysis, showed linear increases in amounts of ER in cell line series with progressively increasing ER, and the antibodies were reproducible on YTMA 49 with Pearson correlations (r(2) values) ranging from 0.87 to 0.94. One antibody with striking cytoplasmic staining (MC20) failed validation. We found evidence for specific cytoplasmic staining with the other four antibodies across eight cohorts. The average incidence was 1.5%, ranging from 0 to 3.2%.
Our data show ERα is present in the cytoplasm in a number of cases using multiple antibodies while reinforcing the importance of antibody validation. In nearly 3,200 cases, cytoplasmic ER is present at very low incidence, suggesting its measurement is unlikely to be of routine clinical value.


Available from: Lisa Ryden, Jul 16, 2014
  • Source
    • "All anti-ERα antibodies failed to detect any signal in ERα-negative HeLa cells (Fig. 2C and 2D). These results confirm that the anti-ERα Sp-1 antibody is specific for the ERα and clearly recognizes the same nuclear ERα in the cytoplasm of breast cancer cells [19]. Therefore, as previously reported [20], antibodies against different N- and C-terminus ERα epitopes stain ERα either only in the nucleus or in the nucleus and in the cytoplasm, respectively. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The homeostatic control of the cellular proteome steady-state is dependent either on the 26S proteasome activity or on the lysosome function. The sex hormone 17β-estradiol (E2) controls a plethora of biological functions by binding to the estrogen receptor α (ERα), which is both a nuclear ligand-activated transcription factor and also an extrinsic plasma membrane receptor. Regulation of E2-induced physiological functions (e.g., cell proliferation) requires the synergistic activation of both transcription of estrogen responsive element (ERE)-containing genes and rapid extra-nuclear phosphorylation of many different signalling kinases (e.g., ERK/MAPK; PI3K/AKT). Although E2 controls ERα intracellular content and activity via the 26S proteasome-mediated degradation, biochemical and microscopy-based evidence suggests a possible cross-talk among lysosomes and ERα activities. Here, we studied the putative localization of endogenous ERα to lysosomes and the role played by lysosomal function in ERα signalling. By using confocal microscopy and biochemical assays, we report that ERα localizes to lysosomes and to endosomes in an E2-dependent manner. Moreover, the inhibition of lysosomal function obtained by chloroquine demonstrates that, in addition to 26S proteasome-mediated receptor elimination, lysosome-based degradation also contributes to the E2-dependent ERα breakdown. Remarkably, the lysosome function is further involved in those ERα activities required for E2-dependent cell proliferation while it is dispensable for ERα-mediated ERE-containing gene transcription. Our discoveries reveal a novel lysosome-dependent degradation pathway for ERα and show a novel biological mechanism by which E2 regulates ERα cellular content and, as a consequence, cellular functions.
    PLoS ONE 04/2014; 9(4):e94880. DOI:10.1371/journal.pone.0094880 · 3.23 Impact Factor
  • Source
    • "Unfortunately, extranuclear ERα is not currently measured clinically and although pathologists may observe such staining, it is not reported. A recent report by Welsh et al.[53] with the purpose of testing a panel of ERα-specific antibodies to detect non-nuclear ERα in clinical specimens found the average incidence to be only 1.5%. In an accompanying commentary, Levin points out that while it is possible that the number of breast tumors that express extranuclear ERα may indeed be small, it is also possible that more sensitive techniques are required to detect the very small ERα pools located outside of the nucleus [54]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Prior to the introduction of tamoxifen, high dose estradiol was used to treat breast cancer patients with similar efficacy as tamoxifen, albeit with some undesirable side effects. There is renewed interest to utilize estradiol to treat endocrine resistant breast cancers, especially since findings from several preclinical models and clinical trials indicate that estradiol may be a rational second-line therapy in patients exhibiting resistance to tamoxifen and/or aromatase inhibitors. We and others reported that breast cancer patients bearing protein kinase C alpha (PKCα)- expressing tumors exhibit endocrine resistance and tumor aggressiveness. Our T47D:A18/PKCα preclinical model is tamoxifen-resistant, hormone-independent, yet is inhibited by 17β-estradiol (E2) in vivo. We previously reported that E2-induced T47D:A18/PKCα tumor regression requires extranuclear ERα and interaction with the extracellular matrix. Methods T47D:A18/PKCα cells were grown in vitro using two-dimensional (2D) cell culture, three-dimensional (3D) Matrigel and in vivo by establishing xenografts in athymic mice. Immunofluoresence confocal microscopy and co-localization were applied to determine estrogen receptor alpha (ERα) subcellular localization. Co-immunoprecipitation and western blot were used to examine interaction of ERα with caveolin-1. Results We report that although T47D:A18/PKCα cells are cross-resistant to raloxifene in cell culture and in Matrigel, raloxifene induces regression of tamoxifen-resistant tumors. ERα rapidly translocates to extranuclear sites during T47D:A18/PKCα tumor regression in response to both raloxifene and E2, whereas ERα is primarily localized in the nucleus in proliferating tumors. E2 treatment induced complete tumor regression whereas cessation of raloxifene treatment resulted in tumor regrowth accompanied by re-localization of ERα to the nucleus. T47D:A18/neo tumors that do not overexpress PKCα maintain ERα in the nucleus during tamoxifen-mediated regression. An association between ERα and caveolin-1 increases in tumors regressing in response to E2. Conclusions Extranuclear ERα plays a role in the regression of PKCα-overexpressing tamoxifen-resistant tumors. These studies underline the unique role of extranuclear ERα in E2- and raloxifene-induced tumor regression that may have implications for treatment of endocrine-resistant PKCα-expressing tumors encountered in the clinic.
    Molecular Cancer 05/2013; 12(1):34. DOI:10.1186/1476-4598-12-34 · 4.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen receptors at the plasma membrane and cytoplasm have been difficult to detect in breast cancer specimens. New imaging approaches are needed to determine the percentage of cancers expressing extranuclear estrogen receptors and their impact on cancer biology and treatment.
    Clinical Cancer Research 01/2012; 18(1):6-8. DOI:10.1158/1078-0432.CCR-11-2547 · 8.72 Impact Factor
Show more