Article

Akt/mTOR counteract the antitumor activities of cixutumumab, an anti-insulin-like growth factor I receptor monoclonal antibody.

Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Molecular Cancer Therapeutics (Impact Factor: 5.6). 12/2011; 10(12):2437-48. DOI: 10.1158/1535-7163.MCT-11-0235
Source: PubMed

ABSTRACT Recent reports have shown limited anticancer therapeutic efficacy of insulin-like growth factor receptor (IGF-1R)-targeted monoclonal antibodies (mAb), but the resistance mechanisms have not been completely identified. Because cooperation between epidermal growth factor receptor (EGFR) and IGF-IR could cause resistance to inhibitors of individual receptor tyrosine kinases, we investigated the involvement of EGFR signaling in resistance to IGF-1R mAb and the underlying mechanisms of action. Most head and neck squamous cell carcinoma (HNSCC) tissues had coexpression of total and phosphorylated IGF-1R and EGFR at high levels compared with paired adjacent normal tissues. Treatment with cixutumumab (IMC-A12), a fully humanized IgG1 mAb, induced activation of Akt and mTOR, resulting in de novo synthesis of EGFR, Akt1, and survivin proteins and activation of the EGFR pathway in cixutumumab-resistant HNSCC and non-small cell lung cancer (NSCLC) cells. Targeting mTOR and EGFR pathways by treatment with rapamycin and cetuximab (an anti-EGFR mAb), respectively, prevented cixutumumab-induced expression of EGFR, Akt, and survivin and induced synergistic antitumor effects in vitro and in vivo. These data show that resistance to IGF-1R inhibition by mAbs is associated with Akt/mTOR-directed enhanced synthesis of EGFR, Akt1, and survivin. Our findings suggest that Akt/mTOR might be effective targets to overcome the resistance to IGF-1R mAbs in HNSCC and NSCLC.

0 Bookmarks
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous research indicated that graphene oxide (GO) can be used to deliver photosensitive anticancer drug, Hypocrellin A (HA), in photodynamic therapy (PDT). However, the anticancer activity of HA was obviously decreased after been loaded on GO. To solve this problem, a chemotherapy drug, 7-ethyl-10-hydroxycamptothecin (SN-38), was co-loaded on the HA loaded GO (HA/SN-38/GO) as a multimodal carrier for the synergistic combination of PDT and chemotherapy for cancer. In vitro results showed that the combination therapy exhibited a synergistic antiproliferative effect compared with PDT and chemotherapy alone. Therefore, HA/SN-38/GO delivery system has the potential to offer dual therapies for the synergistic combination of PDT and chemotherapy for the treatment of cancer.
    Journal of photochemistry and photobiology. B, Biology 04/2014; 135C:7-16. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adrenocortical carcinoma (ACC) is an aggressive malignancy, which lacks an effective systemic treatment. Abnormal activation of insulin-like growth factor receptor 1 (IGF1R) has been frequently observed. Preclinical studies demonstrated that pharmacological inhibition of IGF1R signaling in ACC has antiproliferative effects. A previous phase I trial with an IGF1R inhibitor has demonstrated biological activity against ACC. The objective of this study is to assess the efficacy of the combination of the IGF1R inhibitor cixutumumab (IMC-A12) in association with mitotane as a first-line treatment for advanced/metastatic ACC. We conducted a multicenter, randomized double-arm phase II trial in patients with irresectable recurrent/metastatic ACC. The original protocol included two treatment groups: IMC-A12 + mitotane and mitotane as a single agent, after an initial single-arm phase for safety evaluation with IMC-A12 + mitotane. IMC-A12 was dosed at 10 mg/kg intravenously every 2 weeks. The starting dose for mitotane was 2 g daily, subsequently adjusted according to serum levels/symptoms. The primary endpoint was progression-free survival (PFS) according to RECIST (Response Evaluation Criteria in Solid Tumors). This study was terminated before the randomization phase due to slow accrual and limited efficacy. Twenty patients (13 males, 7 females) with a median age of 50.2 years (range 21.9-79.6) were enrolled for the single-arm phase. Therapeutic effects were observed in 8/20 patients, including one partial response and seven stable diseases. The median PFS was 6 weeks (range 2.66-48). Toxic events included two grade 4 (hyperglycemia and hyponatremia) and one grade 5 (multiorgan failure). Although the regimen demonstrated activity in some patients, the relatively low therapeutic efficacy precluded further studies with this combination of drugs.
    Hormones & cancer. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord injury, rat models of spinal cord injury were established by modified Allen's stall method and interfered for 7 days by intraperitoneal administration of mTOR activator adenosine triphosphate and mTOR kinase inhibitor rapamycin. At 1-4 weeks after spinal cord injury induction, the Basso, Beattie and Bresnahan locomotor rating scale was used to evaluate rat locomotor function, and immunohistochemical staining and western blot analysis were used to detect the expression of nestin (neural stem cell marker), neuronal nuclei (neuronal marker), neuron specific enolase, neurofilament protein 200 (axonal marker), glial fibrillary acidic protein (astrocyte marker), Akt, mTOR and signal transduction and activator of transcription 3 (STAT3). Results showed th+at adenosine triphosphate-mediated Akt/mTOR/STAT3 pathway increased endogenous neural stem cells, induced neurogenesis and axonal growth, inhibited excessive astrogliosis and improved the locomotor function of rats with spinal cord injury.
    Neural Regeneration Research 01/2013; 8(2):101-10. · 0.14 Impact Factor

Full-text

Download
0 Downloads
Available from