Peripheral SMN restoration is essential for long-term rescue of a severe SMA mouse model

Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, New York 11724, USA.
Nature (Impact Factor: 42.35). 10/2011; 478(7367):123-6. DOI: 10.1038/nature10485
Source: PubMed

ABSTRACT Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality; it results from loss-of-function mutations in the survival motor neuron 1 (SMN1) gene. Humans have a paralogue, SMN2, whose exon 7 is predominantly skipped, but the limited amount of functional, full-length SMN protein expressed from SMN2 cannot fully compensate for a lack of SMN1. SMN is important for the biogenesis of spliceosomal small nuclear ribonucleoprotein particles, but downstream splicing targets involved in pathogenesis remain elusive. There is no effective SMA treatment, but SMN restoration in spinal cord motor neurons is thought to be necessary and sufficient. Non-central nervous system (CNS) pathologies, including cardiovascular defects, were recently reported in severe SMA mouse models and patients, reflecting autonomic dysfunction or direct effects in cardiac tissues. Here we compared systemic versus CNS restoration of SMN in a severe mouse model. We used an antisense oligonucleotide (ASO), ASO-10-27, that effectively corrects SMN2 splicing and restores SMN expression in motor neurons after intracerebroventricular injection. Systemic administration of ASO-10-27 to neonates robustly rescued severe SMA mice, much more effectively than intracerebroventricular administration; subcutaneous injections extended the median lifespan by 25 fold. Furthermore, neonatal SMA mice had decreased hepatic Igfals expression, leading to a pronounced reduction in circulating insulin-like growth factor 1 (IGF1), and ASO-10-27 treatment restored IGF1 to normal levels. These results suggest that the liver is important in SMA pathogenesis, underscoring the importance of SMN in peripheral tissues, and demonstrate the efficacy of a promising drug candidate.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rare disease research has reached a tipping point, with the confluence of scientific and technologic developments that if appropriately harnessed, could lead to key breakthroughs and treatments for this set of devastating disorders. Industry-wide trends have revealed that the traditional drug discovery research and development (R&D) model is no longer viable, and drug companies are evolving their approach. Rather than only pursue blockbuster therapeutics for heterogeneous, common diseases, drug companies have increasingly begun to shift their focus to rare diseases. In academia, advances in genetics analyses and disease mechanisms have allowed scientific understanding to mature, but the lack of funding and translational capability severely limits the rare disease research that leads to clinical trials. Simultaneously, there is a movement towards increased research collaboration, more data sharing, and heightened engagement and active involvement by patients, advocates, and foundations. The growth in networks and social networking tools presents an opportunity to help reach other patients but also find researchers and build collaborations. The growth of collaborative software that can enable researchers to share their data could also enable rare disease patients and foundations to manage their portfolio of funded projects for developing new therapeutics and suggest drug repurposing opportunities. Still there are many thousands of diseases without treatments and with only fragmented research efforts. We will describe some recent progress in several rare diseases used as examples and propose how collaborations could be facilitated. We propose that the development of a center of excellence that integrates and shares informatics resources for rare diseases sponsored by all of the stakeholders would help foster these initiatives.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA. They can reduce expression of mutant proteins by breakdown of the targeted transcript, but they can also restore protein expression or modify proteins through interference with pre-mRNA splicing. There has been a recent revival of interest in the use of antisense oligonucleotides to treat several neurodegenerative disorders using different approaches to prevent disease onset or halt disease progression and the first clinical trials for spinal muscular atrophy and amyotrophic lateral sclerosis showing promising results. For these trials, intrathecal delivery is being used but direct infusion into the brain ventricles and several methods of passing the blood brain barrier after peripheral administration are also under investigation. Copyright © 2015. Published by Elsevier B.V.
    Advanced drug delivery reviews 03/2015; 75. DOI:10.1016/j.addr.2015.03.008 · 11.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinal muscular atrophy (SMA) is the most frequent genetic cause of death in infants and toddlers. All cases of spinal muscular atrophy result from reductions in levels of the survival motor neuron (SMN) protein, and so SMN upregulation is a focus of many preclinical and clinical studies. We examine four issues that may be important in planning for therapeutic success. First, neuromuscular phenotypes in the SMNΔ7 mouse model closely match those in human patients but peripheral disease manifestations differ, suggesting that endpoints other than mouse lifespan may be more useful in predicting clinical outcome. Second, SMN plays important roles in multiple central and peripheral cell types, not just motor neurons, and it remains unclear which of these cell types need to be targeted therapeutically. Third, should SMN-restoration therapy not be effective in all patients, blocking molecular changes downstream of SMN reduction may confer significant benefit, making it important to evaluate therapeutic targets other than SMN. Lastly, for patients whose disease progression is slowed, but who retain significant motor dysfunction, additional approaches used to enhance regeneration of the neuromuscular system may be of value.
    01/2015; 7:04. DOI:10.12703/P7-04

Full-text (2 Sources)

Available from
Jun 1, 2014