Size-dependent in vivo toxicity of PEG-coated gold nanoparticles.

Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, People's Republic of China.
International Journal of Nanomedicine (Impact Factor: 4.2). 01/2011; 6:2071-81. DOI: 10.2147/IJN.S21657
Source: PubMed

ABSTRACT Gold nanoparticle toxicity research is currently leading towards the in vivo experiment. Most toxicology data show that the surface chemistry and physical dimensions of gold nanoparticles play an important role in toxicity. Here, we present the in vivo toxicity of 5, 10, 30, and 60 nm PEG-coated gold nanoparticles in mice.
Animal survival, weight, hematology, morphology, organ index, and biochemistry were characterized at a concentration of 4000 μg/kg over 28 days.
The PEG-coated gold particles did not cause an obvious decrease in body weight or appreciable toxicity even after their breakdown in vivo. Biodistribution results show that 5 nm and 10 nm particles accumulated in the liver and that 30 nm particles accumulated in the spleen, while the 60 nm particles did not accumulate to an appreciable extent in either organ. Transmission electron microscopic observations showed that the 5, 10, 30, and 60 nm particles located in the blood and bone marrow cells, and that the 5 and 60 nm particles aggregated preferentially in the blood cells. The increase in spleen index and thymus index shows that the immune system can be affected by these small nanoparticles. The 10 nm gold particles induced an increase in white blood cells, while the 5 nm and 30 nm particles induced a decrease in white blood cells and red blood cells. The biochemistry results show that the 10 nm and 60 nm PEG-coated gold nanoparticles caused a significant increase in alanine transaminase and aspartate transaminase levels, indicating slight damage to the liver.
The toxicity of PEG-coated gold particles is complex, and it cannot be concluded that the smaller particles have greater toxicity. The toxicity of the 10 nm and 60 nm particles was obviously higher than that of the 5 nm and 30 nm particles. The metabolism of these particles and protection of the liver will be more important issues for medical applications of gold-based nanomaterials in future.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: The synergistic effects of gold nanorod (GNR)-mediated mild hyperthermia (MHT; 42-43°C) and cisplatin (CP) activity was evaluated against chemoresistant SKOV3 cells in vitro and with a tumor xenograft model. Materials & methods:in vitro studies were performed using CP at cytostatic concentrations (5 µM) and polyethylene glycol-stabilized GNRs, using near-infrared laser excitation for MHT. Results: The amount of polyethylene glycol-GNRs used for environmental MHT was 1 µg/ml, several times lower than the loadings used in tumor tissue ablation. GNR-mediated MHT increased CP-mediated cytotoxicity by 80%, relative to the projected additive effect, and flow cytometry analysis suggested MHT also enhanced CP-induced apoptosis. In a pilot in vivo study, systemically administered polyethylene glycol-GNRs generated sufficient levels of MHT to enhance CP-induced reductions in tumor volume, despite their heterogeneous distribution in tumor tissue. Conclusion: These studies imply that effective chemotherapies can be developed in combination with low loadings of nanoparticles for localized MHT. Original submitted 6 July 2013; Revised submitted 20 October 2013.
    Nanomedicine 02/2014; · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Antisense therapy is a powerful tool for post-transcriptional gene silencing suitable for downregulating target genes associated to disease. Gold nanoparticles (AuNPs) have been described as effective intracellular delivery vehicles for antisense oligonucleotides providing increased protection against nucleases and targeting capability via simple surface modification. We constructed an Antisense Gold-nanobeacon consisting of a stem-looped oligonucleotide double labeled with 3'-Cy3 and 5'-Thiol-C6 and tested for the effective blocking gene expression in colorectal cancer cells. Due to the beacon conformation, gene silencing was directly detected as fluorescence increases with hybridization to target, which can be used to assess the level of silencing. Moreover, this system was extensively evaluated for the genotoxic, cytotoxic and proteomic effects of gold-nanobeacon exposure to cancer cells. The exposure was evaluated by two-dimensional protein electrophoresis followed by mass spectrometry to perform a proteomic profile and MTT assay, Glutathione-S-transferase assay, micronucleus test and comet assay to assess the genotoxicity. This integrated toxicology evaluation showed that the proposed nanotheranostics strategy does not exhibit significant toxicity, which is extremely relevant when translating into in vivo systems.
    Nanotoxicology 08/2014; 8(5):521-532. · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have demonstrated that gold nanocage-photosensitizer conjugates can enable dual image-guided delivery of photosensitizer and significantly improve the efficacy of photodynamic therapy in a murine model. The photosensitizer, 3-devinyl-3-(1'-hexyloxyethyl)pyropheophorbide (HPPH), was noncovalently entrapped in the poly(ethylene glycol) monolayer coated on the surface of gold nanocages. The conjugate is stable in saline solutions, while incubation in protein rich solutions leads to gradual unloading of the HPPH, which can be monitored optically by fluorescence and photoacoustic imaging. The slow nature of the release in turn results in an increase in accumulation of the drug within implanted tumors due to the passive delivery of gold nanocages. Furthermore, the conjugate is found to generate more therapeutic singlet oxygen and have a lower IC50 value than the free drug alone. Thus the conjugate shows significant suppression of tumor growth as compared to the free drug in vivo. Short-term study showed neither toxicity nor phenotypical changes in mice at therapeutic dose of the conjugates or even at 100-fold higher than therapeutic dose of gold nanocages.
    Theranostics 01/2014; 4(2):163-74. · 7.81 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014