Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins

Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA.
Molecular biology of the cell (Impact Factor: 5.98). 12/2011; 22(23):4694-703. DOI: 10.1091/mbc.E10-12-0994
Source: PubMed

ABSTRACT Arl13b, a ciliary protein within the ADP-ribosylation factor family and Ras superfamily of GTPases, is required for ciliary structure but has poorly defined ciliary functions. In this paper, we further characterize the role of Arl13b in cilia by examining mutant cilia in vitro and determining the localization and dynamics of Arl13b within the cilium. Previously, we showed that mice lacking Arl13b have abnormal Sonic hedgehog (Shh) signaling; in this study, we show the dynamics of Shh signaling component localization to the cilium are disrupted in the absence of Arl13b. Significantly, we found Smoothened (Smo) is enriched in Arl13b-null cilia regardless of Shh pathway stimulation, indicating Arl13b regulates the ciliary entry of Smo. Furthermore, our analysis defines a role for Arl13b in regulating the distribution of Smo within the cilium. These results suggest that abnormal Shh signaling in Arl13b mutant embryos may result from defects in protein localization and distribution within the cilium.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Author Summary Cilia are sensory organelles that are found on most types of human cells and play essential roles in diverse processes ranging from vision and olfaction to embryonic symmetry breaking and kidney development. Individual cilia are divided into multiple functionally and compositionally distinct compartments, including a proximal “Inversin” compartment, which is located near the base of cilia. We used the nematode C. elegans , a well-defined animal model of cilia biology, to characterize the genetics, components, and defining properties of the proximal cilium. The Inversin compartment is conserved in C. elegans , and is established independent of another proximal ciliary region, the microtubule doublet-based region. We showed how components of both the doublet region and the Inversin compartment genetically interact to regulate many pathways linked to core aspects of cilia biology, including ciliogenesis, cilia placement, cilia ultrastruc
    PLoS Genetics 12/2014; 10(12-12):e1004866. DOI:10.1371/journal.pgen.1004866 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cilia perform a variety of functions in a number of developmental and physiological contexts, and are implicated in the pathogenesis of a wide spectrum of human disorders. While the ciliary axoneme is assembled by intraflagellar transport, how ciliary membrane length is regulated is not completely understood. Here, we show that zebrafish embryos as well as mammalian cells overexpressing the ciliary membrane protein Arl13b, an ARF family small GTPase that is essential for ciliary differentiation, showed pronounced increase in ciliary length. Intriguingly, this increase in cilia length occurred as a function of the amounts of overexpressed Arl13b. While the motility of Arl13b overexpressing excessively long motile cilia was obviously disrupted, surprisingly, the abnormally long immotile primary cilia seemed to retain their signaling capacity. arl13b is induced by FoxJ1 and Rfx, and these ciliogenic transcription factors are unable to promote ciliary length increase when Arl13b activity is inhibited. Conversely, overexpression of Arl13b was sufficient to restore ciliary length in zebrafish embryos deficient in FoxJ1 function. We show that Arl13b increases cilia length by inducing protrusion of the ciliary membrane, which is then followed by the extension of the axonemal microtubules. Using mutant versions of Arl13b, one of which has been shown to be causative of the ciliopathy Joubert syndrome, we establish that the GTPase activity of the protein is essential for ciliary membrane extension. Taken together, our findings identify Arl13b as an important effector of ciliary membrane biogenesis and ciliary length regulation, and provide insights into possible mechanisms of dysfunction of the protein in Joubert syndrome. Copyright © 2014. Published by Elsevier Inc.
    Developmental Biology 11/2014; DOI:10.1016/j.ydbio.2014.11.009 · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary cilia are required for vertebrate cells to respond to specific intercellular signals. Here we define when and where primary cilia appear in the mouse embryo using a transgenic line that expresses ARL13B-mCherry in cilia and Centrin 2-GFP in centrosomes. Primary cilia first appear on cells of the epiblast at E6.0 and are subsequently present on all derivatives of the epiblast. In contrast, extraembryonic cells of the visceral endoderm and trophectoderm lineages have centrosomes but no cilia. Stem cell lines derived from embryonic lineages recapitulate the in vivo pattern: epiblast stem cells are ciliated, whereas trophoblast stem cells and extraembryonic endoderm (XEN) stem cells lack cilia. Basal bodies in XEN cells are mature and can form cilia when the AURKA-HDAC6 cilium disassembly pathway is inhibited. The lineage-dependent distribution of cilia is stable throughout much of gestation, defining which cells in the placenta and yolk sac are able to respond to Hedgehog ligands.
    Nature Cell Biology 01/2015; DOI:10.1038/ncb3091 · 20.06 Impact Factor

Full-text (2 Sources)

Available from
Sep 15, 2014