Article

Development of an optimized backbone of FRET biosensors for kinases and GTPases.

Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
Molecular biology of the cell (Impact Factor: 5.98). 12/2011; 22(23):4647-56. DOI: 10.1091/mbc.E11-01-0072
Source: PubMed

ABSTRACT Biosensors based on the principle of Förster (or fluorescence) resonance energy transfer (FRET) have shed new light on the spatiotemporal dynamics of signaling molecules. Among them, intramolecular FRET biosensors have been increasingly used due to their high sensitivity and user-friendliness. Time-consuming optimizations by trial and error, however, obstructed the development of intramolecular FRET biosensors. Here we report an optimized backbone for rapid development of highly sensitive intramolecular FRET biosensors. The key concept is to exclude the "orientation-dependent" FRET and to render the biosensors completely "distance-dependent" with a long, flexible linker. We optimized a pair of fluorescent proteins for distance-dependent biosensors, and then developed a long, flexible linker ranging from 116 to 244 amino acids in length, which reduced the basal FRET signal and thereby increased the gain of the FRET biosensors. Computational simulations provided insight into the mechanisms by which this optimized system was the rational strategy for intramolecular FRET biosensors. With this backbone system, we improved previously reported FRET biosensors of PKA, ERK, JNK, EGFR/Abl, Ras, and Rac1. Furthermore, this backbone enabled us to develop novel FRET biosensors for several kinases of RSK, S6K, Akt, and PKC and to perform quantitative evaluation of kinase inhibitors in living cells.

1 Bookmark
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The second messenger cyclic AMP (cAMP) is a major intracellular mediator of many hormones and neurotransmitters and regulates a myriad of cell functions, including synaptic plasticity in neurons. Whereas cAMP can freely diffuse in the cytosol, a growing body of evidence suggests the formation of cAMP gradients and microdomains near the sites of cAMP production, where cAMP signals remain apparently confined. The mechanisms responsible for the formation of such microdomains are subject of intensive investigation. The development of optical methods based on fluorescence resonance energy transfer (FRET), which allow a direct observation of cAMP signaling with high temporal and spatial resolution, is playing a fundamental role in elucidating the nature of such microdomains. Here, we will review the optical methods used for monitoring cAMP and protein kinase A (PKA) signaling in living cells, providing some examples of their application in neurons, and will discuss the major hypotheses on the formation of cAMP/PKA microdomains.
    Frontiers in Cellular Neuroscience 10/2014; 8:350. · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biological clocks play key roles in organismal development, homeostasis and function. In recent years, much work has focused on circadian clocks, but emerging studies have highlighted the existence of ultradian oscillators - those with a much shorter periodicity than 24 h. Accumulating evidence, together with recently developed optogenetic approaches, suggests that such ultradian oscillators play important roles during cell fate decisions, and analyzing the functional links between ultradian oscillation and cell fate determination will contribute to a deeper understanding of the design principle of developing embryos. In this Review, we discuss the mechanisms of ultradian oscillatory dynamics and introduce examples of ultradian oscillators in various biological contexts. We also discuss how optogenetic technology has been used to elucidate the biological significance of ultradian oscillations.
    Development 10/2014; 141(19):3627-3636. · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks.
    Frontiers in Genetics 08/2014; 5:263.

Full-text (2 Sources)

Download
12 Downloads
Available from
May 16, 2014